So extrahieren Sie mit Python Features aus Bildern
So verwenden Sie Python, um Features aus Bildern zu extrahieren
In der Bildverarbeitung ist die Feature-Extraktion ein wichtiger Prozess. Indem wir die Schlüsselmerkmale eines Bildes extrahieren, können wir das Bild besser verstehen und diese Merkmale verwenden, um verschiedene Aufgaben zu erfüllen, wie z. B. Zielerkennung, Gesichtserkennung usw. Python bietet viele leistungsstarke Bibliotheken, die uns bei der Merkmalsextraktion von Bildern helfen können. In diesem Artikel wird erläutert, wie Sie mit Python Funktionen aus Bildern extrahieren und entsprechende Codebeispiele bereitstellen.
- Umgebungskonfiguration
Zuerst müssen wir Python und die entsprechenden Bibliotheken installieren. In diesem Beispiel verwenden wir OpenCV und Scikit-image, zwei häufig verwendete Bibliotheken. Sie können über die folgenden Befehle installiert werden:
pip install opencv-python pip install scikit-image
- Bibliotheken importieren und Bilder lesen
Bevor wir die Feature-Extraktion durchführen, müssen wir die erforderlichen Bibliotheken importieren und die Bilder lesen, die für die Feature-Extraktion verwendet werden sollen. Hier ist ein einfaches Beispiel:
import cv2 from skimage.feature import hog # 读取图片 image = cv2.imread('image.jpg') # 将图片转为灰度图 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- Extrahieren Sie die Farbmerkmale des Bildes
Bei der Merkmalsextraktion können wir zunächst die Farbmerkmale des Bildes extrahieren. Farbmerkmale sind Informationen zur Farbverteilung in einem Bild. Durch die Analyse der Farbe des Bildes können wir Informationen wie den Gesamtfarbton, die Helligkeit und die Sättigung des Bildes erhalten. In Python können Sie dazu die von OpenCV bereitgestellten Funktionen nutzen.
# 提取图像的颜色特征 hist = cv2.calcHist([gray], [0], None, [256], [0,256])
- Texturmerkmale von Bildern extrahieren
Neben Farbmerkmalen sind auch Texturmerkmale von Bildern sehr wichtig. Texturmerkmale beschreiben die räumliche Beziehung zwischen Pixeln im Bild. Durch die Analyse der Textur des Bildes können wir Informationen wie Texturstruktur, Rauheit und Feinheit des Bildes erhalten. In Python kann dies mithilfe der von Scikit-image bereitgestellten Funktionen erreicht werden.
# 提取图像的纹理特征 features = hog(gray, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), block_norm='L2-Hys')
- Formmerkmale von Bildern extrahieren
Neben Farb- und Texturmerkmalen helfen uns auch Formmerkmale von Bildern, Bilder zu verstehen. Formmerkmale beschreiben die Form und Struktur von Objekten im Bild. Durch die Analyse der Form des Bildes können wir Konturinformationen, Fläche, Umfang und andere Informationen des Bildes erhalten. In Python können Sie dazu die von OpenCV bereitgestellten Funktionen nutzen.
# 提取图像的形状特征 _, contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) num_contours = len(contours)
- Feature-Ergebnisse anzeigen
Schließlich können wir die extrahierten Feature-Ergebnisse zur einfachen Beobachtung und Analyse anzeigen.
# 展示特征结果 cv2.imshow("Image", image) cv2.waitKey(0) cv2.destroyAllWindows()
Durch die obigen Schritte können wir Python verwenden, um Funktionen aus Bildern zu extrahieren. Dies ist natürlich nur die Grundlage der Merkmalsextraktion, und in praktischen Anwendungen können weitere Methoden und Techniken zur Merkmalsextraktion beteiligt sein. Ich hoffe, dass dieser Artikel den Lesern ein grundlegendes Verständnis vermitteln und Hilfe für weitere tiefgreifende Recherchen bieten kann.
Referenzen:
- Offizielle OpenCV-Dokumentation: https://docs.opencv.org/master/
- Offizielle Scikit-image-Dokumentation: https://scikit-image.org/
Zusammenfassung:
Dieser Artikel Einführung in die Verwendung von Python zum Extrahieren von Features aus Bildern und Bereitstellung relevanter Codebeispiele. Die Merkmalsextraktion ist eine der Kernaufgaben in der Bildverarbeitung. Durch die Analyse von Merkmalen wie Farbe, Textur und Form von Bildern können wir Bilder besser verstehen und verschiedene Bildverarbeitungsaufgaben implementieren. Python bietet viele leistungsstarke Bibliotheken, die uns bei der Merkmalsextraktion unterstützen. Leser können entsprechend ihren eigenen Anforderungen geeignete Methoden und Tools für die Verwendung und weitere Forschung auswählen.
Das obige ist der detaillierte Inhalt vonSo extrahieren Sie mit Python Features aus Bildern. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

PHP entstand 1994 und wurde von Rasmuslerdorf entwickelt. Es wurde ursprünglich verwendet, um Website-Besucher zu verfolgen und sich nach und nach zu einer serverseitigen Skriptsprache entwickelt und in der Webentwicklung häufig verwendet. Python wurde Ende der 1980er Jahre von Guidovan Rossum entwickelt und erstmals 1991 veröffentlicht. Es betont die Lesbarkeit und Einfachheit der Code und ist für wissenschaftliche Computer, Datenanalysen und andere Bereiche geeignet.

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Um den Python-Code im Sublime-Text auszuführen, müssen Sie zuerst das Python-Plug-In installieren, dann eine .py-Datei erstellen und den Code schreiben, und drücken Sie schließlich Strg B, um den Code auszuführen, und die Ausgabe wird in der Konsole angezeigt.

Das Schreiben von Code in Visual Studio Code (VSCODE) ist einfach und einfach zu bedienen. Installieren Sie einfach VSCODE, erstellen Sie ein Projekt, wählen Sie eine Sprache aus, erstellen Sie eine Datei, schreiben Sie Code, speichern und führen Sie es aus. Die Vorteile von VSCODE umfassen plattformübergreifende, freie und open Source, leistungsstarke Funktionen, reichhaltige Erweiterungen sowie leichte und schnelle.

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.

Das Ausführen von Python-Code in Notepad erfordert, dass das ausführbare Python-ausführbare Datum und das NPPEXEC-Plug-In installiert werden. Konfigurieren Sie nach dem Installieren von Python und dem Hinzufügen des Pfades den Befehl "Python" und den Parameter "{current_directory} {file_name}" im NPPExec-Plug-In, um Python-Code über den Shortcut-Taste "F6" in Notoza auszuführen.
