Verarbeitung natürlicher Sprache mit Python und NLTK
Der Bereich der künstlichen Intelligenz, bekannt als „Natural Language Processing“ (NLP), konzentriert sich auf die Interaktion von Computern mit menschlicher Sprache. Dabei geht es um die Erstellung von Algorithmen und Modellen, die es Computern ermöglichen, menschliche Sprache zu verstehen, zu interpretieren und zu erzeugen. Die Natural Language Toolkit (NLTK)-Bibliothek und Python, eine universelle Programmiersprache, bieten leistungsstarke Tools und Ressourcen für NLP-Aufgaben. In diesem Artikel untersuchen wir die Grundlagen von NLP mit Python und NLTK und wie sie in verschiedenen NLP-Anwendungen verwendet werden können.
Verstehen Sie die Verarbeitung natürlicher Sprache
Die Verarbeitung natürlicher Sprache deckt ein breites Spektrum unterschiedlicher Aufgaben ab, darunter die Beantwortung von Fragen, maschinelle Übersetzung, Stimmungsanalyse, Erkennung benannter Entitäten und Textklassifizierung. Verständnis und Sprachproduktion sind zwei große Kategorien, in die diese Aufgaben unterteilt werden können.
Sprache verstehen
Sprache zu verstehen ist der erste Schritt bei der Verarbeitung natürlicher Sprache. Zu den Aufgaben gehören Wortsegmentierung, Wortstammbildung, Lemmatisierung, Teil-of-Speech-Tagging und syntaktische Analyse. NLTK stellt die vollständigen Tools und Ressourcen bereit, die zur schnellen Erledigung dieser Aufgaben erforderlich sind.
Lassen Sie uns in einige Codebeispiele eintauchen, um zu sehen, wie NLTK zur Erfüllung dieser Aufgaben verwendet werden kann:
Tokenisierung
Tokenisierung ist der Prozess der Zerlegung von Text in seine einzelnen Wörter oder Sätze. NLTK bietet eine Reihe von Tokenizern, die unterschiedliche Sprachen und Tokenisierungsanforderungen bewältigen können. Ein Beispiel für die Segmentierung eines Satzes in Wörter ist wie folgt:
import nltk nltk.download('punkt') from nltk.tokenize import word_tokenize sentence = "Natural Language Processing is amazing!" tokens = word_tokenize(sentence) print(tokens)
Ausgabe
['Natural', 'Language', 'Processing', 'is', 'amazing', '!']
Stemming und Lemmatisierung
Stemming und Lemmatisierung zielen darauf ab, Wörter auf ihre Wurzelformen zu reduzieren. NLTK bietet Algorithmen zur Stammbildung und Lemmatisierung, wie z. B. PorterStemmer und WordNetLemmatizer. Hier ist ein Beispiel:
from nltk.stem import PorterStemmer, WordNetLemmatizer stemmer = PorterStemmer() lemmatizer = WordNetLemmatizer() word = "running" stemmed_word = stemmer.stem(word) lemmatized_word = lemmatizer.lemmatize(word) print("Stemmed Word:", stemmed_word) print("Lemmatized Word:", lemmatized_word)
Ausgabe
Stemmed Word: run Lemmatized Word: running
Part-of-Speech-Tagging
Part-of-Speech-Tagging weist Wörtern in Sätzen, wie Substantiven, Verben, Adjektiven usw., grammatikalische Bezeichnungen zu. Es hilft beim Verständnis der syntaktischen Struktur von Sätzen und ist entscheidend für Aufgaben wie die Identifizierung benannter Entitäten und die Zusammenfassung von Texten. Hier ist ein Beispiel:
nltk.download('averaged_perceptron_tagger') from nltk import pos_tag from nltk.tokenize import word_tokenize sentence = "NLTK makes natural language processing easy." tokens = word_tokenize(sentence) pos_tags = pos_tag(tokens) print(pos_tags)
Ausgabe
[('NLTK', 'NNP'), ('makes', 'VBZ'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN'), ('easy', 'JJ'), ('.', '.')]
Syntaktische Analyse
Um Sätze in einer baumartigen Struktur darzustellen, die als Analysebaum bezeichnet wird, umfasst die syntaktische Analyse die Analyse der grammatikalischen Struktur des Satzes. Die syntaktische Analyse wird vom NLTK-Parser bereitgestellt. Ein Beispiel für die Verwendung von RecursiveDescentParser ist wie folgt:
nltk.download('averaged_perceptron_tagger') nltk.download('maxent_ne_chunkchunker') from nltk import pos_tag, RegexpParser from nltk.tokenize import word_tokenize sentence = "The cat is sitting on the mat." tokens = word_tokenize(sentence) pos_tags = pos_tag(tokens) grammar = r""" NP: {<DT>?<JJ>*<NN>} # NP VP: {<VB.*><NP|PP>?} # VP PP: {<IN><NP>} # PP """ parser = RegexpParser(grammar) parse_tree = parser.parse(pos_tags) parse_tree.pretty_print()
Ausgabe
S ____________|___ | VP | ___________|____ | | PP | | ____|___ NP | NP | | | _______|___ | DT VBZ JJ NN IN | | | | | The is sitting cat on the mat
Sprache generieren
Zusätzlich zum Sprachverständnis beinhaltet die Verarbeitung natürlicher Sprache (NLP) die Fähigkeit, etwas zu erschaffen, das der menschlichen Sprache ähnelt. Mithilfe von Methoden wie Sprachmodellierung, Textgenerierung und maschineller Übersetzung stellt NLTK Werkzeuge zur Textgenerierung bereit. Rekurrente neuronale Netze (RNNs) und Gestaltwandler sind auf Deep Learning basierende Sprachmodelle, die dabei helfen, kontextkohärenten Text vorherzusagen und zu generieren.
Apps für die Verarbeitung natürlicher Sprache mit Python und NLTK
Sentiment-Analyse: Sentiment-Analyse zielt darauf ab, die in einem bestimmten Text ausgedrückte Stimmung zu bestimmen, ob sie positiv, negativ oder neutral ist. Mit NLTK können Sie Klassifikatoren für gekennzeichnete Datensätze trainieren, um die Stimmung in Kundenrezensionen, Social-Media-Beiträgen oder anderen Textdaten automatisch zu klassifizieren.
Textklassifizierung: Textklassifizierung ist der Prozess der Klassifizierung von Textdokumenten in vordefinierte Kategorien oder Klassen. NLTK umfasst eine Reihe von Algorithmen und Techniken, darunter Naive Bayes, Support Vector Machines (SVM) und Entscheidungsbäume, die für Aufgaben wie Spam-Erkennung, Themenklassifizierung und Stimmungsklassifizierung verwendet werden können.
Erkennung benannter Entitäten: Die Erkennung benannter Entitäten (NER) ist in der Lage, benannte Entitäten wie Personennamen, Organisationen, Orte und Daten in einem bestimmten Text zu identifizieren und zu klassifizieren. NLTK bietet vorab trainierte Modelle und Tools, die NER für verschiedene Arten von Textdaten durchführen können, um Anwendungen wie Informationsextraktion und Fragebeantwortung zu erreichen.
Maschinelle Übersetzung: NLTK ermöglicht es Programmierern, Anwendungen zu erstellen, die Texte automatisch von einer Sprache in eine andere übersetzen können, indem es Zugriff auf maschinelle Übersetzungstools wie Google Translate bietet. Um genaue Übersetzungen zu erstellen, verwenden diese Systeme leistungsstarke statistische und neuronale Netzwerkmodelle.
Textzusammenfassung: Verwendung natürlicher Sprachverarbeitung (NLP), um automatisch Zusammenfassungen langer Dokumente oder Artikel zu erstellen. NLP-Algorithmen können prägnante Zusammenfassungen erstellen, die die Essenz des Originalinhalts perfekt erfassen, indem sie die kritischsten Sätze oder Schlüsselphrasen im Text hervorheben. Dies ist sehr hilfreich für Projekte wie die Aggregation von Nachrichten, die Klassifizierung von Dokumenten oder die kurze Zusammenfassung langer Texte.
Frage- und Antwortsystem: Der Aufbau eines Frage- und Antwortsystems, das Benutzeranfragen verstehen und relevante Antworten liefern kann, kann Technologie zur Verarbeitung natürlicher Sprache nutzen. Diese Programme untersuchen die Anfrage, finden relevante Daten und generieren prägnante Antworten. Benutzer können spezifische Informationen schnell und effizient erhalten, indem sie diese in Chatbots, virtuellen Assistenten und Informationsabrufsystemen verwenden.
Informationsextraktion: Die Verarbeitung natürlicher Sprache ermöglicht die Extraktion strukturierter Daten aus unstrukturierten Textdaten. Mithilfe von Methoden wie der Erkennung benannter Entitäten und der Extraktion von Beziehungen können NLP-Algorithmen bestimmte Entitäten wie Personen, Organisationen und Orte sowie deren Beziehungen in einem bestimmten Text identifizieren. Diese Daten können durch Data Mining, Informationsabruf und die Erstellung von Wissensgraphen genutzt werden.
Fazit
Das faszinierende Gebiet der Verarbeitung natürlicher Sprache ermöglicht es Computern, menschliche Sprache zu verstehen, zu analysieren und zu erzeugen. In Kombination mit der NLTK-Bibliothek bietet Python einen vollständigen Satz an Tools und Ressourcen für NLP-Aufgaben. Um verschiedene NLP-Anwendungen zu lösen, stellt NLTK die notwendigen Algorithmen und Modelle für Wortart-Tagging, Stimmungsanalyse und maschinelle Übersetzung bereit. Mithilfe von Codebeispielen, Python und NLTK können wir neue Erkenntnisse aus Textdaten gewinnen und intelligente Systeme erstellen, die auf natürlichere und intuitivere Weise mit Menschen kommunizieren. Bereiten Sie also Ihre Python-IDE vor, importieren Sie NLTK und begeben Sie sich auf eine Reise, um die Geheimnisse der Verarbeitung natürlicher Sprache zu entdecken.
Das obige ist der detaillierte Inhalt vonVerarbeitung natürlicher Sprache mit Python und NLTK. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
