Matrix- und lineare Algebra-Berechnungen in Python
In diesem Artikel erfahren Sie, wie Sie mit Python Matrix- und lineare Algebraberechnungen durchführen, z. B. Matrixmultiplikation, Determinanten finden, lineare Gleichungen lösen usw.
Dies kann mit einem Matrixobjekt aus der NumPy-Bibliothek erreicht werden. Bei Berechnungen sind Matrizen relativ vergleichbar mit Array-Objekten.
Lineare Algebra ist ein umfangreiches Thema und würde den Rahmen dieses Artikels sprengen.
Wenn Sie jedoch Matrizen und Vektoren manipulieren müssen, ist NumPy ein guter Ausgangspunkt.
Methode zur Verwendung
Finden Sie die Transponierte einer Matrix mit Numpy
Finden Sie die Umkehrung einer Matrix mit Numpy
Matrix- und Vektormultiplikation
Verwenden Sie das Unterpaket numpy.linalg, um die Determinante einer Matrix zu erhalten
Finden Sie Eigenwerte mit numpy.linalg
Verwenden Sie numpy.linalg, um Gleichungen zu lösen
Methode 1: Finden Sie die Transponierte einer Matrix mit Numpy
numpy.matrix.T-Eigenschaft − Gibt die Transponierte der angegebenen Matrix zurück.
Die chinesische Übersetzung vonBeispiel
lautet:Beispiel
Das folgende Programm verwendet die Eigenschaft numpy.matrix.T, um die Transponierte der Matrix zurückzugeben −
# importing NumPy module import numpy as np # input matrix inputMatrix = np.matrix([[6, 1, 5], [2, 0, 8], [1, 4, 3]]) # printing the input matrix print("Input Matrix:\n", inputMatrix) # printing the transpose of an input matrix # by applying the .T attribute of the NumPy matrix of the numpy Module print("Transpose of an input matrix\n", inputMatrix.T)
Ausgabe
Bei der Ausführung generiert das obige Programm die folgende Ausgabe:
Input Matrix: [[6 1 5] [2 0 8] [1 4 3]] Transpose of an input matrix [[6 2 1] [1 0 4] [5 8 3]]
Methode 2: Finden Sie die Umkehrung einer Matrix mit Numpy
numpy.matrix.I-Eigenschaft – Gibt die Umkehrung der angegebenen Matrix zurück.
Die chinesische Übersetzung vonBeispiel
lautet:Beispiel
Das folgende Programm verwendet die Eigenschaft numpy.matrix.I, um die Umkehrung einer Matrix zurückzugeben −
# importing NumPy module import numpy as np # input matrix inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]]) # printing the input matrix print("Input Matrix:\n", inputMatrix) # printing the inverse of an input matrix # by applying the .I attribute of the NumPy matrix of the numpy Module print("Inverse of an input matrix:\n", inputMatrix.I)
Ausgabe
Bei der Ausführung generiert das obige Programm die folgende Ausgabe:
Input Matrix: [[6 1 5] [2 0 8] [1 4 3]] Inverse of an input matrix: [[ 0.21333333 -0.11333333 -0.05333333] [-0.01333333 -0.08666667 0.25333333] [-0.05333333 0.15333333 0.01333333]]
Methode 3: Matrizen und Vektoren multiplizieren
Die chinesische Übersetzung vonBeispiel
lautet:Beispiel
Das folgende Programm gibt das Produkt aus Eingabematrix und Vektor unter Verwendung des *-Operators -
zurück# importing numpy module import numpy as np # input matrix inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]]) # printing the input matrix print("Input Matrix:\n", inputMatrix) # creating a vector using numpy.matrix() function inputVector = np.matrix([[1],[3],[5]]) # printing the multiplication of the input matrix and vector print("Multiplication of input matrix and vector:\n", inputMatrix*inputVector)
Ausgabe
Bei der Ausführung generiert das obige Programm die folgende Ausgabe:
Input Matrix: [[6 1 5] [2 0 8] [1 4 3]] Multiplication of input matrix and vector: [[34] [42] [28]]
Methode 4: Verwenden Sie das Unterpaket numpy.linalg, um die Determinante der Matrix zu erhalten
numpy.linalg.det()-Funktion − Berechnet die Determinante einer quadratischen Matrix.
Die chinesische Übersetzung vonBeispiel
lautet:Beispiel
Das folgende Programm verwendet die Funktion numpy.linalg.det(), um die Determinante der Matrix −
zurückzugeben# importing numpy module import numpy as np # input matrix inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]]) # printing the input matrix print("Input Matrix:\n", inputMatrix) # getting the determinant of an input matrix outputDet = np.linalg.det(inputMatrix) # printing the determinant of an input matrix print("Determinant of an input matrix:\n", outputDet)
Ausgabe
Bei der Ausführung generiert das obige Programm die folgende Ausgabe:
Input Matrix: [[6 1 5] [2 0 8] [1 4 3]] Determinant of an input matrix: -149.99999999999997
Fünfte Möglichkeit, Eigenwerte mit numpy.linalg zu finden
numpy.linalg.eigvals()-Funktion − Berechnet die Eigenwerte und rechten Eigenvektoren der angegebenen quadratischen Matrix/Matrix.
Die chinesische Übersetzung vonBeispiel
lautet:Beispiel
Das folgende Programm gibt die Eigenwerte einer Eingabematrix mithilfe der Funktion numpy.linalg.eigvals() −
zurück# importing NumPy module import numpy as np # input matrix inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]]) # printing the input matrix print("Input Matrix:\n", inputMatrix) # getting Eigenvalues of an input matrix eigenValues = np.linalg.eigvals(inputMatrix) # printing Eigenvalues of an input matrix print("Eigenvalues of an input matrix:\n", eigenValues)
Ausgabe
Bei der Ausführung generiert das obige Programm die folgende Ausgabe:
Input Matrix: [[6 1 5] [2 0 8] [1 4 3]] Eigenvalues of an input matrix: [ 9.55480959 3.69447805 -4.24928765]
Methode 6: Verwenden Sie numpy.linalg, um Gleichungen zu lösen
Wir können ein Problem lösen, das dem Ermitteln des Werts von X für A*X = B ähnelt,
Wobei A eine Matrix und B ein Vektor ist.
Die chinesische Übersetzung vonBeispiel
lautet:Beispiel
Das Folgende ist ein Programm, das die Funktion „solve()“ verwendet, um den x-Wert zurückzugeben-
# importing NumPy module import numpy as np # input matrix inputMatrix = np.matrix([[6, 1, 5],[2, 0, 8],[1, 4, 3]]) # printing the input matrix print("Input Matrix:\n", inputMatrix) # creating a vector using np.matrix() function inputVector = np.matrix([[1],[3],[5]]) # getting the value of x in an equation inputMatrix * x = inputVector x_value = np.linalg.solve(inputMatrix, inputVector) # printing x value print("x value:\n", x_value) # multiplying input matrix with x values print("Multiplication of input matrix with x values:\n", inputMatrix * x_value)
Ausgabe
Bei der Ausführung generiert das obige Programm die folgende Ausgabe:
Input Matrix: [[6 1 5] [2 0 8] [1 4 3]] x value: [[-0.39333333] [ 0.99333333] [ 0.47333333]] Multiplication of input matrix with x values: [[1.] [3.] [5.]]
Fazit
In diesem Artikel haben wir gelernt, wie man Matrix- und lineare Algebraoperationen mit dem NumPy-Modul in Python durchführt. Wir haben gelernt, wie man die Transponierte, Inverse und Determinante einer Matrix berechnet. Wir haben auch gelernt, wie man einige Berechnungen in der linearen Algebra durchführt, wie zum Beispiel das Lösen von Gleichungen und das Bestimmen von Eigenwerten.
Das obige ist der detaillierte Inhalt vonMatrix- und lineare Algebra-Berechnungen in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

VS Code ist der vollständige Name Visual Studio Code, der eine kostenlose und open-Source-plattformübergreifende Code-Editor und Entwicklungsumgebung von Microsoft ist. Es unterstützt eine breite Palette von Programmiersprachen und bietet Syntax -Hervorhebung, automatische Codebettel, Code -Snippets und intelligente Eingabeaufforderungen zur Verbesserung der Entwicklungseffizienz. Durch ein reiches Erweiterungs -Ökosystem können Benutzer bestimmte Bedürfnisse und Sprachen wie Debugger, Code -Formatierungs -Tools und Git -Integrationen erweitern. VS -Code enthält auch einen intuitiven Debugger, mit dem Fehler in Ihrem Code schnell gefunden und behoben werden können.

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.

Die Installation von CentOS-Installationen erfordert die folgenden Schritte: Installieren von Abhängigkeiten wie Entwicklungstools, PCRE-Devel und OpenSSL-Devel. Laden Sie das Nginx -Quellcode -Paket herunter, entpacken Sie es, kompilieren Sie es und installieren Sie es und geben Sie den Installationspfad als/usr/local/nginx an. Erstellen Sie NGINX -Benutzer und Benutzergruppen und setzen Sie Berechtigungen. Ändern Sie die Konfigurationsdatei nginx.conf und konfigurieren Sie den Hörport und den Domänennamen/die IP -Adresse. Starten Sie den Nginx -Dienst. Häufige Fehler müssen beachtet werden, z. B. Abhängigkeitsprobleme, Portkonflikte und Konfigurationsdateifehler. Die Leistungsoptimierung muss entsprechend der spezifischen Situation angepasst werden, z. B. das Einschalten des Cache und die Anpassung der Anzahl der Arbeitsprozesse.
