Inhaltsverzeichnis
Grammatik
Beispiel
Ausgabe
Heim Backend-Entwicklung Python-Tutorial Wie erstelle ich ein kumulatives Kurvendiagramm in Python?

Wie erstelle ich ein kumulatives Kurvendiagramm in Python?

Aug 23, 2023 pm 08:33 PM
python 创建 累积曲线图

Das

ogive-Diagramm stellt grafisch die kumulative Verteilungsfunktion (CDF) eines Datensatzes dar, manchmal auch als kumulative Häufigkeitskurve bezeichnet. Es wird verwendet, um die Datenverteilung zu untersuchen und Muster und Trends zu entdecken. Matplotlib, Pandas und Numpy sind einige der von Python bereitgestellten Bibliotheken und Tools zum Erstellen von Otive-Grafiken. In diesem Tutorial schauen wir uns an, wie man Matplotlib zum Generieren von Ogive-Grafiken in Python verwendet.

Um ein kumulatives Kurvendiagramm zu erstellen, müssen wir die erforderlichen Bibliotheken importieren. In diesem Beispiel verwenden wir Matplotlib, Pandas und Numpy. Matplotlib ist eine beliebte Datenvisualisierungsbibliothek zum Erstellen interaktiver Diagramme und Grafiken in Python. Numpy hingegen wird zur Durchführung komplexer mathematischer Operationen verwendet. Pandas ist eine weitere weit verbreitete Python-Bibliothek, die auf Datenmanipulation und -analyse spezialisiert ist.

Grammatik

plt.plot(*np.histogram(data, bins), 'o-')
Nach dem Login kopieren

In dieser Syntax ist „Daten“ der Datensatz, der zum Erstellen des kumulativen Kurvendiagramms verwendet wird. Die Häufigkeitsverteilung der Daten wird durch die Funktion „np.histogram“ bestimmt, die auch die Werte und Bin-Grenzen des Histogramms zurückgibt. Verwenden Sie „plt.plot“, um ein kumulatives Kurvendiagramm zu erstellen. Verwenden Sie dazu die Formatzeichenfolge „o-“, um die Datenpunkte darzustellen und sie mit Linien zu verbinden. Der „*“-Operator übergibt dann die Histogrammwerte und Bin-Grenzen als separate Argumente an „plt.plot“.

Beispiel

Dies ist ein einfaches Beispiel, das ein Ogivendiagramm erstellt, um die kumulative Häufigkeitsverteilung einer Liste von Würfelwürfen zu visualisieren.

import numpy as np
import matplotlib.pyplot as plt

# List of dice rolls
rolls = [1, 2, 3, 4, 5, 6, 3, 6, 2, 5, 1, 6, 4, 2, 3, 5, 1, 4, 6, 3]

# Calculate the cumulative frequency
bins = np.arange(0, 8, 1)
freq, bins = np.histogram(rolls, bins=bins)
cumulative_freq = np.cumsum(freq)

# Create the ogive graph
plt.plot(bins[1:], cumulative_freq, '-o')
plt.xlabel('Dice Rolls')
plt.ylabel('Cumulative Frequency')
plt.title('Ogive Graph of Dice Rolls')
plt.show()
Nach dem Login kopieren

Zuerst haben wir ein Ogive-Diagramm erstellt, um die kumulative Häufigkeitsverteilung einer Reihe von Würfelwürfen zu visualisieren, indem wir die erforderlichen Module NumPy und Matplotlib importierten. Anschließend definiert der Code eine Reihe von Würfelergebnissen und verwendet die Histogrammfunktion von NumPy, um ein „Histogramm“ der Daten zu erstellen, wobei die Anzahl der Gruppen und der Wertebereich der Daten angegeben werden. Als nächstes verwenden Sie die „Cumsum“-Funktion von NumPy, um die kumulative Häufigkeit der Daten darzustellen.

Verwenden Sie abschließend die Funktion „plot“ von Matplotlib, um die kumulativen Häufigkeiten als logarithmisches Diagramm darzustellen, wobei die Obergrenze jedes Abschnitts als x-Achse verwendet wird, wodurch ein Ogive-Diagramm entsteht. Das resultierende Ogive-Diagramm zeigt die kumulative Häufigkeitsverteilung von Würfelwürfen, wobei die x-Achse die gewürfelten Werte und die y-Achse die kumulative Häufigkeit dieser Werte bis zu einem bestimmten Punkt darstellt. Mithilfe dieser Grafik lässt sich die Häufigkeit und Verteilung von Würfelwürfen analysieren.

Ausgabe

Wie erstelle ich ein kumulatives Kurvendiagramm in Python?

Beispiel

Dieses Beispiel zeigt ein Ogivendiagramm zur Visualisierung der Verteilung von 500 Zufallszahlen zwischen 0 und 100.

import numpy as np
import matplotlib.pyplot as plt

# Generate random data
data = np.random.randint(0, 100, 500)

# Calculate the cumulative frequency
bins = np.arange(0, 110, 10)
freq, bins = np.histogram(data, bins=bins)
cumulative_freq = np.cumsum(freq)

# Create the ogive graph
plt.plot(bins[1:], cumulative_freq, '-o')
plt.xlabel('Data')
plt.ylabel('Cumulative Frequency')
plt.title('Ogive Graph of Random Data')
plt.show()
Nach dem Login kopieren

In diesem Beispiel verwenden wir zunächst NumPy, um einen Datensatz mit 500 Zufallszahlen zwischen 0 und 100 zu generieren. Verwenden Sie dann NumPy, um die kumulative Häufigkeit der Daten zu berechnen. Die Intervallbreite jeder Häufigkeit beträgt 10. Verwenden Sie abschließend Matplotlib, um die Beziehung zwischen der kumulativen Häufigkeit und der Obergrenze jedes Intervalls darzustellen und so ein Ogive-Diagramm zu erstellen. Dieses Beispiel zeigt, wie man mit Python und zufällig generierten Daten ein Ogivendiagramm erstellt.

Ausgabe

Wie erstelle ich ein kumulatives Kurvendiagramm in Python?

Wir haben gelernt, mit dem Matplotlib-Modul kumulative Kurvendiagramme in Python zu erstellen. Dies ist ein einfacher Prozess unter Verwendung der Matplotlib-Bibliothek. Indem Sie Ihre Daten laden, kumulative Häufigkeiten berechnen und die Ergebnisse grafisch darstellen, können Sie die Verteilung Ihres Datensatzes leicht visualisieren und etwaige Muster oder Trends erkennen. Sie können Ihre Grafiken mit Beschriftungen, Titeln und Stilen anpassen, um sie optisch ansprechender und informativer zu gestalten. Kumulative Liniendiagramme sind nützliche Werkzeuge in der statistischen Analyse und können eine Vielzahl von Daten darstellen, von Einkommensverteilungen bis hin zu Testergebnissen.

Das obige ist der detaillierte Inhalt vonWie erstelle ich ein kumulatives Kurvendiagramm in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Hadidb: Eine leichte, horizontal skalierbare Datenbank in Python Hadidb: Eine leichte, horizontal skalierbare Datenbank in Python Apr 08, 2025 pm 06:12 PM

Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

Der 2-stündige Python-Plan: ein realistischer Ansatz Der 2-stündige Python-Plan: ein realistischer Ansatz Apr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Navicat -Methode zum Anzeigen von MongoDB -Datenbankkennwort Navicat -Methode zum Anzeigen von MongoDB -Datenbankkennwort Apr 08, 2025 pm 09:39 PM

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

Python: Erforschen der primären Anwendungen Python: Erforschen der primären Anwendungen Apr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Wie optimieren Sie die MySQL-Leistung für Hochlastanwendungen? Wie optimieren Sie die MySQL-Leistung für Hochlastanwendungen? Apr 08, 2025 pm 06:03 PM

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Wie man AWS -Kleber mit Amazon Athena verwendet Wie man AWS -Kleber mit Amazon Athena verwendet Apr 09, 2025 pm 03:09 PM

Als Datenprofi müssen Sie große Datenmengen aus verschiedenen Quellen verarbeiten. Dies kann Herausforderungen für das Datenmanagement und die Analyse darstellen. Glücklicherweise können zwei AWS -Dienste helfen: AWS -Kleber und Amazon Athena.

So starten Sie den Server mit Redis So starten Sie den Server mit Redis Apr 10, 2025 pm 08:12 PM

Zu den Schritten zum Starten eines Redis -Servers gehören: Installieren von Redis gemäß dem Betriebssystem. Starten Sie den Redis-Dienst über Redis-Server (Linux/macOS) oder redis-server.exe (Windows). Verwenden Sie den Befehl redis-cli ping (linux/macOS) oder redis-cli.exe ping (Windows), um den Dienststatus zu überprüfen. Verwenden Sie einen Redis-Client wie Redis-Cli, Python oder Node.js, um auf den Server zuzugreifen.

So lesen Sie Redis -Warteschlange So lesen Sie Redis -Warteschlange Apr 10, 2025 pm 10:12 PM

Um eine Warteschlange aus Redis zu lesen, müssen Sie den Warteschlangenname erhalten, die Elemente mit dem Befehl LPOP lesen und die leere Warteschlange verarbeiten. Die spezifischen Schritte sind wie folgt: Holen Sie sich den Warteschlangenname: Nennen Sie ihn mit dem Präfix von "Warteschlange:" wie "Warteschlangen: My-Queue". Verwenden Sie den Befehl LPOP: Wischen Sie das Element aus dem Kopf der Warteschlange aus und geben Sie seinen Wert zurück, z. B. die LPOP-Warteschlange: my-queue. Verarbeitung leerer Warteschlangen: Wenn die Warteschlange leer ist, gibt LPOP NIL zurück, und Sie können überprüfen, ob die Warteschlange existiert, bevor Sie das Element lesen.

See all articles