


Vorhersage der Kraftstoffeffizienz mit Tensorflow in Python
Die Vorhersage der Kraftstoffeffizienz ist für die Optimierung der Fahrzeugleistung und die Reduzierung der CO2-Emissionen von entscheidender Bedeutung. Dies kann mithilfe der Python-Bibliothek Tensorflow leicht vorhergesagt werden. In diesem Artikel untersuchen wir, wie wir die Leistungsfähigkeit der beliebten Bibliothek für maschinelles Lernen Tensorflow nutzen können, um die Kraftstoffeffizienz mithilfe von Python vorherzusagen. Durch die Erstellung eines Vorhersagemodells auf der Grundlage des Auto-MPG-Datensatzes können wir die Kraftstoffeffizienz eines Fahrzeugs genau abschätzen. Lassen Sie uns einen tiefen Einblick in den Prozess der Erstellung genauer Vorhersagen zur Kraftstoffeffizienz mithilfe von Tensorflow in Python werfen.
Automatischer MPG-Datensatz
Um die Kraftstoffeffizienz genau vorherzusagen, benötigen wir zuverlässige Datensätze. Der Auto MPG-Datensatz stammt aus dem UCI Machine Learning Repository und liefert die notwendigen Informationen für unser Modell. Es enthält verschiedene Attribute wie Zylinderzahl, Hubraum, Gewicht, PS, Beschleunigung, Herkunftsland und Modelljahr. Diese Attribute dienen als Merkmale, während die Kraftstoffeffizienz (gemessen in Meilen pro Gallone oder MPG) als Etikett dient. Durch die Analyse dieses Datensatzes können wir das Modell trainieren, Muster zu erkennen und Vorhersagen auf der Grundlage ähnlicher Fahrzeugeigenschaften zu treffen.
Bereiten Sie den Datensatz vor
Bevor wir das Vorhersagemodell erstellen, müssen wir den Datensatz vorbereiten. Dies beinhaltet den Umgang mit fehlenden Werten und die Normalisierung von Merkmalen. Fehlende Werte können den Trainingsprozess stören, daher entfernen wir sie aus dem Datensatz. Durch die Standardisierung von Merkmalen wie PS und Gewicht wird sichergestellt, dass alle Merkmale in einem ähnlichen Bereich liegen. Dieser Schritt ist von entscheidender Bedeutung, da Merkmale mit großen numerischen Bereichen den Lernprozess des Modells dominieren können. Durch die Normalisierung des Datensatzes wird sichergestellt, dass alle Funktionen während des Trainings fair behandelt werden.
Wie kann man die Kraftstoffeffizienz mit TensorFlow vorhersagen?
Hier sind die Schritte, die wir befolgen werden, um die Kraftstoffeffizienz mithilfe von Tensorflow vorherzusagen -
Importieren Sie die notwendigen Bibliotheken – wir importieren Tensorflow, Keras, Layer und Pandas.
Laden Sie den automatischen MPG-Datensatz. Wir geben auch Spaltennamen an und behandeln alle fehlenden Werte.
Teilen Sie den Datensatz in Features und Beschriftungen auf – Wir teilen den Datensatz in zwei Teile auf – Features (Eingabevariablen) und Beschriftungen (Ausgabevariablen).
Normalisierte Funktionen – Wir verwenden die Min-Max-Skalierung, um Funktionen zu normalisieren.
Der Datensatz ist in Trainingssatz und Testsatz unterteilt.
Definieren Sie die Modellarchitektur – Wir definieren ein einfaches sequentielles Modell mit drei dichten Schichten, mit 64 Neuronen pro Schicht und unter Verwendung der ReLU-Aktivierungsfunktion.
Kompilieren Sie das Modell – Wir kompilieren das Modell mit der Verlustfunktion des mittleren quadratischen Fehlers (MSE) und dem RMSprop-Optimierer.
Trainieren Sie das Modell – Trainieren Sie das Modell für 1000 Epochen auf dem Trainingssatz und geben Sie eine Validierungsaufteilung von 0,2 an.
Bewerten Sie das Modell – Führen Sie eine Modellbewertung am Testsatz durch und berechnen Sie den durchschnittlichen MSE sowie die Kraftstoffeffizienz und den absoluten Fehler (MAE).
Berechnen Sie die Kraftstoffeffizienz eines Neuwagens – Wir verwenden Pandas DataFrame, um die Funktion für ein Neuwagen zu erstellen. Wir normalisieren die Merkmale von Neuwagen mit demselben Skalierungsfaktor wie der Originaldatensatz.
Prognostizieren Sie die Kraftstoffeffizienz von Neuwagen mithilfe trainierter Modelle.
Prognostizierte Kraftstoffeffizienz drucken – Wir drucken die prognostizierte Kraftstoffeffizienz von Neuwagen auf der Konsole aus
Testmetriken drucken – Wir drucken die Test-MAE und -MSE auf der Konsole.
Das folgende Programm verwendet Tensorflow, um ein neuronales Netzwerkmodell zur Vorhersage der Kraftstoffeffizienz basierend auf dem Auto MPG-Datensatz zu erstellen.
Beispiel
# Import necessary libraries import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import pandas as pd # Load the Auto MPG dataset url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data" column_names = ['MPG','Cylinders','Displacement','Horsepower','Weight', 'Acceleration', 'Model Year', 'Origin'] raw_dataset = pd.read_csv(url, names=column_names, na_values='?', comment='\t', sep=' ', skipinitialspace=True) # Drop missing values dataset = raw_dataset.dropna() # Separate the dataset into features and labels cfeatures = dataset.drop('MPG', axis=1) labels = dataset['MPG'] # Normalize the features using min-max scaling normalized_features = (cfeatures - cfeatures.min()) / (cfeatures.max() - cfeatures.min()) # Split the dataset into training and testing sets train_features = normalized_features[:300] test_features = normalized_features[300:] train_labels = labels[:300] test_labels = labels[300:] # Define the model architecture for this we will use sequential API of the keras model1 = keras.Sequential([ layers.Dense(64, activation='relu', input_shape=[len(train_features.keys())]), layers.Dense(64, activation='relu'), layers.Dense(1) ]) #if you want summary of the model’s architecture you can use the code: model1.summary() # Model compilation optimizer = tf.keras.optimizers.RMSprop(0.001) model1.compile(loss='mse', optimizer=optimizer, metrics=['mae', 'mse']) # Train the model Mhistory = model1.fit( train_features, train_labels, epochs=1000, validation_split = 0.2, verbose=0) # Evaluate the model on the test set test_loss, test_mae, test_mse = model1.evaluate(test_features, test_labels) # Train the model model1.fit(train_features, train_labels, epochs=1000, verbose=0) # Calculation of the fuel efficiency for a new car new_car_features = pd.DataFrame([[4, 121, 110, 2800, 15.4, 81, 3]], columns=column_names[1:]) normalized_new_car_features = (new_car_features - cfeatures.min()) / (cfeatures.max() - cfeatures.min()) fuel_efficiencyc = model1.predict(normalized_new_car_features) # Print the test metrics print("Test MAE:", test_mae) print("Test MSE:", test_mse) print("Predicted Fuel Efficiency:", fuel_efficiencyc[0][0])
Ausgabe
C:\Users\Tutorialspoint>python image.py 3/3 [==============================] - 0s 2ms/step - loss: 18.8091 - mae: 3.3231 - mse: 18.8091 1/1 [==============================] - 0s 90ms/step Test MAE: 3.3230929374694824 Test MSE: 18.80905532836914 Predicted Fuel Efficiency: 24.55885
Fazit
Zusammenfassend lässt sich sagen, dass die Vorhersage der Kraftstoffeffizienz mithilfe von Tensorflow in Python ein leistungsstarkes Tool ist, das Herstellern und Verbrauchern dabei helfen kann, fundierte Entscheidungen zu treffen. Durch die Analyse verschiedener Fahrzeugeigenschaften und das Training eines neuronalen Netzwerkmodells können wir die Kraftstoffeffizienz genau vorhersagen.
Diese Informationen können die Entwicklung energieeffizienterer Fahrzeuge fördern, die Umweltbelastung verringern und Kosten für Verbraucher sparen. Die Vielseitigkeit und Benutzerfreundlichkeit von Tensorflow machen es zu einem wertvollen Hilfsmittel für die Automobilindustrie bei ihrem Bestreben, die Kraftstoffeffizienz zu verbessern.
Das obige ist der detaillierte Inhalt vonVorhersage der Kraftstoffeffizienz mit Tensorflow in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die Geschwindigkeit der mobilen XML zu PDF hängt von den folgenden Faktoren ab: der Komplexität der XML -Struktur. Konvertierungsmethode für mobile Hardware-Konfiguration (Bibliothek, Algorithmus) -Codierungsoptimierungsmethoden (effiziente Bibliotheken, Optimierung von Algorithmen, Cache-Daten und Nutzung von Multi-Threading). Insgesamt gibt es keine absolute Antwort und es muss gemäß der spezifischen Situation optimiert werden.

Mit einer einzigen Anwendung ist es unmöglich, XML -zu -PDF -Konvertierung direkt auf Ihrem Telefon zu vervollständigen. Es ist erforderlich, Cloud -Dienste zu verwenden, die in zwei Schritten erreicht werden können: 1. XML in PDF in der Cloud, 2. Zugriff auf die konvertierte PDF -Datei auf dem Mobiltelefon konvertieren oder herunterladen.

Es gibt keine integrierte Summenfunktion in der C-Sprache, daher muss sie selbst geschrieben werden. Die Summe kann erreicht werden, indem das Array durchquert und Elemente akkumulieren: Schleifenversion: Die Summe wird für die Schleifen- und Arraylänge berechnet. Zeigerversion: Verwenden Sie Zeiger, um auf Array-Elemente zu verweisen, und eine effiziente Summierung wird durch Selbststillstandszeiger erzielt. Dynamisch Array -Array -Version zuweisen: Zuordnen Sie Arrays dynamisch und verwalten Sie selbst den Speicher selbst, um sicherzustellen, dass der zugewiesene Speicher befreit wird, um Speicherlecks zu verhindern.

Es gibt keine App, die alle XML -Dateien in PDFs umwandeln kann, da die XML -Struktur flexibel und vielfältig ist. Der Kern von XML zu PDF besteht darin, die Datenstruktur in ein Seitenlayout umzuwandeln, für das XML analysiert und PDF generiert werden muss. Zu den allgemeinen Methoden gehören das Parsen von XML mithilfe von Python -Bibliotheken wie ElementTree und das Generieren von PDFs unter Verwendung der ReportLab -Bibliothek. Für komplexe XML kann es erforderlich sein, XSLT -Transformationsstrukturen zu verwenden. Wenn Sie die Leistung optimieren, sollten Sie Multithread- oder Multiprozesse verwenden und die entsprechende Bibliothek auswählen.

XML -Formatierungs -Tools können Code nach Regeln eingeben, um die Lesbarkeit und das Verständnis zu verbessern. Achten Sie bei der Auswahl eines Tools auf die Anpassungsfunktionen, den Umgang mit besonderen Umständen, die Leistung und die Benutzerfreundlichkeit. Zu den häufig verwendeten Werkzeugtypen gehören Online-Tools, IDE-Plug-Ins und Befehlszeilen-Tools.

Es ist nicht einfach, XML direkt auf Ihr Telefon in PDF umzuwandeln, kann jedoch mit Hilfe von Cloud -Diensten erreicht werden. Es wird empfohlen, eine leichte mobile App zu verwenden, um XML -Dateien hochzuladen und generierte PDFs zu empfangen und sie mit Cloud -APIs zu konvertieren. Cloud -APIs verwenden serverlose Computerdienste, und die Auswahl der richtigen Plattform ist entscheidend. Bei der Behandlung von XML -Parsen und PDF -Generation müssen Komplexität, Fehlerbehebung, Sicherheit und Optimierungsstrategien berücksichtigt werden. Der gesamte Prozess erfordert, dass die Front-End-App und die Back-End-API zusammenarbeiten, und es erfordert ein gewisses Verständnis einer Vielzahl von Technologien.

XML kann mithilfe eines XSLT -Konverters oder einer Bildbibliothek in Bilder konvertiert werden. XSLT -Konverter: Verwenden Sie einen XSLT -Prozessor und Stylesheet, um XML in Bilder zu konvertieren. Bildbibliothek: Verwenden Sie Bibliotheken wie Pil oder Imagemagick, um Bilder aus XML -Daten zu erstellen, z. B. Zeichnen von Formen und Text.

Verwenden Sie die meisten Texteditoren, um XML -Dateien zu öffnen. Wenn Sie eine intuitivere Baumanzeige benötigen, können Sie einen XML -Editor verwenden, z. B. Sauerstoff XML -Editor oder XMLSPY. Wenn Sie XML -Daten in einem Programm verarbeiten, müssen Sie eine Programmiersprache (wie Python) und XML -Bibliotheken (z. B. XML.etree.elementtree) verwenden, um zu analysieren.
