


In C++ geschrieben, ermitteln Sie die Anzahl der Primzahlen in einem Subarray
In diesem Artikel beschreiben wir die Methode, um die Anzahl der Primzahlen in einem Subarray zu ermitteln. Wir haben ein Array arr[] aus positiven Zahlen und q Abfragen mit zwei ganzen Zahlen, die unseren Bereich {l, R} darstellen, und wir müssen die Anzahl der Primzahlen in dem angegebenen Bereich ermitteln. Unten ist ein Beispiel für das gegebene Problem –
Input : arr[] = {1, 2, 3, 4, 5, 6}, q = 1, L = 0, R = 3 Output : 2 In the given range the primes are {2, 3}. Input : arr[] = {2, 3, 5, 8 ,12, 11}, q = 1, L = 0, R = 5 Output : 4 In the given range the primes are {2, 3, 5, 11}.
Möglichkeiten, die Lösung zu finden
In diesem Fall habe ich an zwei Methoden gedacht –
Brute Force
Bei dieser Methode können wir den Bereich nehmen und die Anzahl der Primzahlen herausfinden Zahlen, die in diesem Bereich existieren.
Beispiel
#include <bits/stdc++.h> using namespace std; bool isPrime(int N){ if (N <= 1) return false; if (N <= 3) return true; if(N % 2 == 0 || N % 3 == 0) return false; for (int i = 5; i * i <= N; i = i + 2){ // as even number can't be prime so we increment i by 2. if (N % i == 0) return false; // if N is divisible by any number then it is not prime. } return true; } int main(){ int N = 6; // size of array. int arr[N] = {1, 2, 3, 4, 5, 6}; int Q = 1; while(Q--){ int L = 0, R = 3; int cnt = 0; for(int i = L; i <= R; i++){ if(isPrime(arr[i])) cnt++; // counter variable. } cout << cnt << "\n"; } return 0; }
Ausgabe
2
Diese Methode ist jedoch nicht sehr gut, da die Gesamtkomplexität dieser Methode O(Q*N*√N) beträgt, was nicht sehr gut ist.
Effiziente Methode
In dieser Methode verwenden wir Sieve of Eratosthenes, um ein boolesches Array zu erstellen, das uns sagt, ob das Element eine Primzahl ist oder nicht, und dann durch den angegebenen Bereich iterieren und die Gesamtzahl der Primzahlen im Array ermitteln . boolesches Array.
Beispiel
#include <bits/stdc++.h> using namespace std; vector<bool> sieveOfEratosthenes(int *arr, int n, int MAX){ vector<bool> p(n); bool Prime[MAX + 1]; for(int i = 2; i < MAX; i++) Prime[i] = true; Prime[1] = false; for (int p = 2; p * p <= MAX; p++) { // If prime[p] is not changed, then // it is a prime if (Prime[p] == true) { // Update all multiples of p for (int i = p * 2; i <= MAX; i += p) Prime[i] = false; } } for(int i = 0; i < n; i++){ if(Prime[arr[i]]) p[i] = true; else p[i] = false; } return p; } int main(){ int n = 6; int arr[n] = {1, 2, 3, 4, 5, 6}; int MAX = -1; for(int i = 0; i < n; i++){ MAX = max(MAX, arr[i]); } vector<bool> isprime = sieveOfEratosthenes(arr, n, MAX); // boolean array. int q = 1; while(q--){ int L = 0, R = 3; int cnt = 0; // count for(int i = L; i <= R; i++){ if(isprime[i]) cnt++; } cout << cnt << "\n"; } return 0; }
Ausgabe
2
Erklärung des obigen Codes
Diese Methode ist viel schneller als die Brute-Force-Methode, die wir zuvor angewendet haben, da die Zeitkomplexität jetzt O(Q*N) beträgt, d. h. als die vorherige Komplexität viel besser.
Bei dieser Methode berechnen wir die Elemente vorab und markieren sie als Primzahl oder Nicht-Primzahl, wodurch unsere Komplexität verringert wird. Darüber hinaus verwenden wir auch das Sieb des Eratosthenes, das uns dabei helfen wird, Primzahlen schneller zu finden. Bei dieser Methode kennzeichnen wir alle Zahlen als Primzahlen oder Nicht-Primzahlen mit der Komplexität O(N*log(log(N))), indem wir die Zahlen mit Primfaktoren kennzeichnen.
Fazit
In diesem Artikel haben wir das Problem gelöst, die Anzahl der Primzahlen in einem Subarray in O(Q*N) mithilfe von Sieve of Eratosthenes zu ermitteln. Wir haben auch ein C++-Programm zur Lösung dieses Problems und einen vollständigen Weg zur Lösung dieses Problems (normal und effizient) gelernt. Wir können das gleiche Programm in anderen Sprachen wie C, Java, Python und anderen Sprachen schreiben.
Das obige ist der detaillierte Inhalt vonIn C++ geschrieben, ermitteln Sie die Anzahl der Primzahlen in einem Subarray. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.

Die Wahrheit über Probleme mit der Dateibetrieb: Dateiöffnung fehlgeschlagen: unzureichende Berechtigungen, falsche Pfade und Datei besetzt. Das Schreiben von Daten fehlgeschlagen: Der Puffer ist voll, die Datei ist nicht beschreibbar und der Speicherplatz ist nicht ausreichend. Andere FAQs: Langsame Dateitraversal, falsche Textdateicodierung und Binärdatei -Leser -Fehler.

C Sprachmultithreading -Programmierhandbuch: Erstellen von Threads: Verwenden Sie die Funktion pThread_create (), um Thread -ID, Eigenschaften und Threadfunktionen anzugeben. Threadsynchronisation: Verhindern Sie den Datenwettbewerb durch Mutexes, Semaphoren und bedingte Variablen. Praktischer Fall: Verwenden Sie Multi-Threading, um die Fibonacci-Nummer zu berechnen, mehrere Threads Aufgaben zuzuweisen und die Ergebnisse zu synchronisieren. Fehlerbehebung: Lösen Sie Probleme wie Programmabstürze, Thread -Stop -Antworten und Leistungs Engpässe.

Wie gibt ich einen Countdown in C aus? Antwort: Verwenden Sie Schleifenanweisungen. Schritte: 1. Definieren Sie die Variable N und speichern Sie die Countdown -Nummer in der Ausgabe. 2. Verwenden Sie die while -Schleife, um n kontinuierlich zu drucken, bis n weniger als 1 ist; 3. Drucken Sie im Schleifenkörper den Wert von n aus; 4. Am Ende der Schleife subtrahieren Sie N um 1, um den nächsten kleineren gegenseitigen gegenseitigen gegenseitigen gegenseitig auszugeben.

Algorithmen sind die Anweisungen zur Lösung von Problemen, und ihre Ausführungsgeschwindigkeit und Speicherverwendung variieren. Bei der Programmierung basieren viele Algorithmen auf der Datensuche und Sortierung. In diesem Artikel werden mehrere Datenabruf- und Sortieralgorithmen eingeführt. Die lineare Suche geht davon aus, dass es ein Array gibt [20.500,10,5,100, 1,50] und die Nummer 50 ermitteln muss. Der lineare Suchalgorithmus prüft jedes Element im Array Eins nach eins nach dem anderen, bis der Zielwert gefunden oder das vollständige Array durchquert wird. Der Algorithmus-Flussdiagramm lautet wie folgt: Der Pseudo-Code für die lineare Suche lautet wie folgt: Überprüfen Sie jedes Element: Wenn der Zielwert gefunden wird: Return Return Falsch C-Sprache Implementierung: #includeIntmain (void) {i

C Sprachdatenstruktur: Überblick über die Schlüsselrolle der Datenstruktur in der künstlichen Intelligenz im Bereich der künstlichen Intelligenz sind Datenstrukturen für die Verarbeitung großer Datenmengen von entscheidender Bedeutung. Datenstrukturen bieten eine effektive Möglichkeit, Daten zu organisieren und zu verwalten, Algorithmen zu optimieren und die Programmeffizienz zu verbessern. Gemeinsame Datenstrukturen, die häufig verwendete Datenstrukturen in der C -Sprache sind: Arrays: Eine Reihe von nacheinander gespeicherten Datenelementen mit demselben Typ. Struktur: Ein Datentyp, der verschiedene Arten von Daten zusammen organisiert und ihnen einen Namen gibt. Linked List: Eine lineare Datenstruktur, in der Datenelemente durch Zeiger miteinander verbunden werden. Stack: Datenstruktur, die dem LEST-In-First-Out-Prinzip (LIFO) folgt. Warteschlange: Datenstruktur, die dem First-In-First-Out-Prinzip (FIFO) folgt. Praktischer Fall: Die benachbarte Tabelle in der Graphentheorie ist künstliche Intelligenz

C -Sprachfunktionen sind wiederverwendbare Codeblöcke. Sie erhalten Input, führen Vorgänge und Rückgabergebnisse aus, die modular die Wiederverwendbarkeit verbessert und die Komplexität verringert. Der interne Mechanismus der Funktion umfasst Parameterübergabe-, Funktionsausführung und Rückgabeteile. Der gesamte Prozess beinhaltet eine Optimierung wie die Funktion inline. Eine gute Funktion wird nach dem Prinzip der einzigen Verantwortung, der geringen Anzahl von Parametern, den Benennungsspezifikationen und der Fehlerbehandlung geschrieben. Zeiger in Kombination mit Funktionen können leistungsstärkere Funktionen erzielen, z. B. die Änderung der externen Variablenwerte. Funktionszeiger übergeben Funktionen als Parameter oder speichern Adressen und werden verwendet, um dynamische Aufrufe zu Funktionen zu implementieren. Das Verständnis von Funktionsmerkmalen und Techniken ist der Schlüssel zum Schreiben effizienter, wartbarer und leicht verständlicher C -Programme.

Fehlerbehebungstipps für C -Sprachverarbeitungsdateien Wenn Dateien in der C -Sprache verarbeitet werden, können Sie auf verschiedene Probleme stoßen. Das Folgende sind häufig zu Problemen und entsprechende Lösungen: Problem 1: Der Dateicode kann nicht geöffnet werden: Datei*fp = fopen ("myFile.txt", "r"); if (fp == null) {// Datei Öffnen fehlgeschlagen} Grund} Grund: Dateipfad -Fehler -Datei nicht vorhandener Datei -Read -Lösung vorhanden. Charbuffer [100]; size_tread_bytes = fread (Puffer, 1, Siz
