Inhaltsverzeichnis
Einführung
Hauptkomponentenanalyse verstehen
Die Mathematik hinter PCA
Implementierung von PCA in Python
Beispiel
Ausgabe
Vorteile von PCA
Praktisches Beispiel für PCA
Fazit
Heim Backend-Entwicklung Python-Tutorial Hauptkomponentenanalyse mit Python

Hauptkomponentenanalyse mit Python

Sep 04, 2023 pm 05:17 PM
python 主成分分析 pca

Hauptkomponentenanalyse mit Python

Einführung

Hauptkomponentenanalyse (PCA) ist eine weit verbreitete statistische Technik zur Dimensionsreduzierung und Merkmalsextraktion in der Datenanalyse. Es bietet einen leistungsstarken Rahmen, um zugrunde liegende Muster und Strukturen in hochdimensionalen Datensätzen aufzudecken. Mit dem Aufkommen einer großen Anzahl von Bibliotheken und Tools in Python ist die Implementierung von PCA einfach und unkompliziert geworden. In diesem Artikel befassen wir uns mit der Hauptkomponentenanalyse in Python und besprechen deren Theorie, Implementierung und praktische Anwendungen.

Wir werden die Schritte zur Durchführung einer PCA mit beliebten Python-Tools wie NumPy und scikitlearn durchgehen. Durch das Studium von PCA lernen Sie, wie Sie die Dimensionalität eines Datensatzes reduzieren, wichtige Merkmale extrahieren und komplexe Daten in einem niedrigdimensionalen Raum anzeigen.

Hauptkomponentenanalyse verstehen

Verwenden Sie eine statistische Methode namens Hauptkomponentenanalyse, um einen Datensatz statistisch in einen neuen Satz von Variablen umzuwandeln, die als Hauptkomponenten bezeichnet werden. Linearkombinationen der Anfangsvariablen, aus denen diese Komponenten bestehen, werden nach ihren Korrelationen geordnet. Jede nachfolgende Komponente erklärt so viel wie möglich von der verbleibenden Variation, wobei die erste Hauptkomponente die größte Variation in den Daten erfasst.

Die Mathematik hinter PCA

Viele mathematische Ideen und Berechnungen werden in PCA verwendet. Hier sind die wichtigsten Vorgänge zum Abschluss der PCA:

  • Standardisierung: Die Attribute eines Datensatzes müssen standardisiert werden, sodass sie eine Einheitsvarianz und einen Mittelwert von Null aufweisen. Der Beitrag jeder Variablen zur PCA ist somit ausgeglichen.

  • Kovarianzmatrix: Um zu verstehen, wie die verschiedenen Variablen im Datensatz zueinander in Beziehung stehen, wird eine Kovarianzmatrix erstellt. Es misst, wie sich Änderungen einer Variablen auf Änderungen einer anderen Variablen auswirken.

  • Eigenzerlegung: Die Kovarianzmatrix wird in ihre Eigenvektoren und Eigenwerte zerlegt. Eigenvektoren stellen Richtungen oder Hauptkomponenten dar, während Eigenwerte den durch jeden Eigenvektor erklärten Varianzbetrag quantifizieren.

  • Auswahl der Hauptkomponenten: Wählen Sie den Eigenvektor, der dem höchsten Eigenwert entspricht, als Hauptkomponente aus. Diese Komponenten erfassen die größte Varianz in den Daten.

  • Projektion: Projizieren Sie den Originaldatensatz auf einen neuen Unterraum, der von den ausgewählten Hauptkomponenten aufgespannt wird. Diese Transformation reduziert die Dimensionalität des Datensatzes, während wesentliche Informationen erhalten bleiben.

Implementierung von PCA in Python

Beispiel

import numpy as np 
from sklearn.decomposition import PCA 
 
# Sample data 
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) 
 
# Instantiate PCA with desired number of components 
pca = PCA(n_components=2) 
 
# Fit and transform the data 
X_pca = pca.fit_transform(X) 
 
# Print the transformed data 
print(X_pca) 
Nach dem Login kopieren

Ausgabe

[[-7.79422863  0.        ] 
 [-2.59807621  0.        ] 
 [ 2.59807621  0.        ] 
 [ 7.79422863 -0.        ]] 
Nach dem Login kopieren

Vorteile von PCA

  • Feature-Extraktion: PCA kann auch zum Extrahieren von Features verwendet werden. Wir können die aufschlussreichsten Merkmale eines Datensatzes isolieren, indem wir eine Teilmenge der Hauptkomponenten auswählen (d. h. die von PCA generierten transformierten Variablen). Dieser Ansatz trägt dazu bei, die Anzahl der zur Darstellung der Daten verwendeten Variablen zu reduzieren und gleichzeitig die wichtigsten Details beizubehalten. Die Merkmalsextraktion mithilfe von PCA kann besonders nützlich sein, wenn mit Datensätzen gearbeitet wird, die hohe Korrelationen zwischen Rohmerkmalen aufweisen oder bei denen es viele doppelte oder irrelevante Merkmale gibt.

  • Datenvisualisierung: PCA kann die Visualisierung hochdimensionaler Daten im niedrigdimensionalen Raum realisieren. Durch die Darstellung von Hauptkomponenten, die transformierte Variablen darstellen, können Muster, Cluster oder Beziehungen zwischen Datenpunkten beobachtet werden. Diese Visualisierung hilft, die Struktur und Eigenschaften des Datensatzes zu verstehen. Durch die Reduzierung der Daten auf zwei oder drei Dimensionen kann PCA aufschlussreiche Diagramme und Diagramme erstellen, die die Datenexploration, Mustererkennung und Identifizierung von Ausreißern erleichtern.

  • Rauschunterdrückung: Die Hauptkomponente, die den geringsten Grad an Varianz oder Fluktuation in den Daten erfasst, wird manchmal als Rauschen bezeichnet. Um die Daten zu entrauschen und sich auf die wichtigsten Informationen zu konzentrieren, kann PCA helfen, indem bestimmte Komponenten aus der Studie ausgeschlossen werden. Dank dieses Filterprozesses können die zugrunde liegenden Muster und Beziehungen im Datensatz besser verstanden werden. Bei der Arbeit mit verrauschten oder verunreinigten Datensätzen ist die Rauschunterdrückung mithilfe von PCA besonders nützlich, wenn Sie wichtige Signale vom Rauschen trennen müssen.

  • Multikollinearitätserkennung: Multikollinearität tritt auf, wenn die unabhängigen Variablen im Datensatz signifikant korreliert sind. PCA kann dabei helfen, Multikollinearität zu identifizieren, indem die Korrelationsmuster der Hauptkomponenten ausgewertet werden. Es ist möglich, die Variablen, die Multikollinearität verursachen, genau zu bestimmen, indem die Verbindungen zwischen Komponenten untersucht werden. Die Kenntnis dieser Informationen kann der Datenanalyse zugute kommen, da Multikollinearität zu Modellinstabilität und falscher Interpretation der Verbindungen zwischen Variablen führen kann. Durch die Behandlung von Multikollinearitätsproblemen (z. B. durch Variablenauswahl oder Modelländerungen) können Analysen zuverlässiger und belastbarer gemacht werden.

Praktisches Beispiel für PCA

Hauptkomponentenanalyse (PCA) ist eine allgemeine Technik, die in verschiedenen Bereichen Anwendung findet. Sehen wir uns einige Beispiele aus der Praxis an, bei denen PCA nützlich sein kann:

  • Bildkomprimierung: PCA ist eine Technik, die visuelle Daten komprimiert und gleichzeitig wichtige Details beibehält. Bei der Bildkomprimierung kann PCA verwendet werden, um hochdimensionale Pixeldaten in eine niedrigdimensionale Darstellung umzuwandeln. Durch die Verwendung eines kleineren Satzes primärer Komponenten zur Darstellung eines Bildes können wir den Speicherbedarf erheblich reduzieren, ohne dass die visuelle Qualität darunter leidet. PCA-basierte Bildkomprimierungsmethoden werden häufig in einer Vielzahl von Anwendungen eingesetzt, darunter Multimedia-Speicherung, -Übertragung und Bildverarbeitung.

  • Genetik und Bioinformatik: Genom- und Bioinformatikforscher nutzen PCA häufig, um Genexpressionsdaten auszuwerten, genetische Marker zu finden und Populationsmuster zu untersuchen. Bei der Genexpressionsanalyse können hochdimensionale Genexpressionsprofile in eine kleinere Anzahl von Hauptkomponenten komprimiert werden. Diese Reduzierung erleichtert das Erkennen und Verstehen zugrunde liegender Muster und Zusammenhänge zwischen Genen. PCA-basierte Bioinformatikmethoden verbessern die Krankheitsdiagnose, die Arzneimittelentwicklung und maßgeschneiderte Behandlungen.

  • Finanzanalyse: Die Finanzanalyse nutzt PCA für verschiedene Zwecke, einschließlich Portfoliooptimierung und Risikomanagement. Die Hauptkomponentenanalyse (PCA) kann verwendet werden, um die Hauptkomponenten in einem Portfolio zu finden, die die größten Unterschiede in den Vermögensrenditen abbilden. PCA hilft dabei, versteckte Faktoren zu identifizieren, die die Vermögensrenditen beeinflussen, und deren Auswirkungen auf Portfoliorisiko und -leistung zu quantifizieren, indem die Dimensionalität finanzieller Variablen reduziert wird. In den Bereichen Finanzen, Faktoranalyse, Risikomodellierung und Vermögensallokation werden PCA-basierte Methoden verwendet.

  • Computer Vision: Computer Vision-Aufgaben wie Objekt- und Gesichtserkennung basieren stark auf PCA. PCA kann verwendet werden, um die Hauptkomponenten von Gesichtsbildern zu extrahieren und Gesichter in niedrigdimensionalen Unterräumen bei der Gesichtserkennung darzustellen. PCA-basierte Methoden bieten effektive Gesichtserkennungs- und Authentifizierungssysteme durch die Erfassung wichtiger Gesichtsmerkmale. Um die Dimensionalität von Bilddeskriptoren zu reduzieren und die Wirksamkeit und Genauigkeit von Erkennungsalgorithmen zu verbessern, wird PCA auch bei der Objekterkennung verwendet.

Fazit

Die Hauptkomponentenanalyse (PCA) ist eine leistungsstarke Methode zur Dimensionsreduzierung, Merkmalsextraktion und Datenexploration. Es bietet eine Möglichkeit, hochdimensionale Daten auf einen niedrigerdimensionalen Raum zu reduzieren, ohne die wichtigsten Details zu verlieren. In diesem Artikel stellen wir die Grundidee von PCA, seine Implementierung in Python mithilfe von scikit-learn und seine Anwendungen in verschiedenen Bereichen vor. Analysten und Datenwissenschaftler können PCA verwenden, um die Datenvisualisierung zu verbessern, Modellierungsaktivitäten zu rationalisieren und nützliche Erkenntnisse aus großen, komplexen Datensätzen zu gewinnen. Zum Toolkit eines Datenwissenschaftlers sollte PCA gehören, das häufig für Feature-Engineering, explorative Datenanalyse und Datenvorverarbeitung verwendet wird.

Das obige ist der detaillierte Inhalt vonHauptkomponentenanalyse mit Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Der 2-stündige Python-Plan: ein realistischer Ansatz Der 2-stündige Python-Plan: ein realistischer Ansatz Apr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python: Erforschen der primären Anwendungen Python: Erforschen der primären Anwendungen Apr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Navicat -Methode zum Anzeigen von MongoDB -Datenbankkennwort Navicat -Methode zum Anzeigen von MongoDB -Datenbankkennwort Apr 08, 2025 pm 09:39 PM

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

Wie man AWS -Kleber mit Amazon Athena verwendet Wie man AWS -Kleber mit Amazon Athena verwendet Apr 09, 2025 pm 03:09 PM

Als Datenprofi müssen Sie große Datenmengen aus verschiedenen Quellen verarbeiten. Dies kann Herausforderungen für das Datenmanagement und die Analyse darstellen. Glücklicherweise können zwei AWS -Dienste helfen: AWS -Kleber und Amazon Athena.

So starten Sie den Server mit Redis So starten Sie den Server mit Redis Apr 10, 2025 pm 08:12 PM

Zu den Schritten zum Starten eines Redis -Servers gehören: Installieren von Redis gemäß dem Betriebssystem. Starten Sie den Redis-Dienst über Redis-Server (Linux/macOS) oder redis-server.exe (Windows). Verwenden Sie den Befehl redis-cli ping (linux/macOS) oder redis-cli.exe ping (Windows), um den Dienststatus zu überprüfen. Verwenden Sie einen Redis-Client wie Redis-Cli, Python oder Node.js, um auf den Server zuzugreifen.

So lesen Sie Redis -Warteschlange So lesen Sie Redis -Warteschlange Apr 10, 2025 pm 10:12 PM

Um eine Warteschlange aus Redis zu lesen, müssen Sie den Warteschlangenname erhalten, die Elemente mit dem Befehl LPOP lesen und die leere Warteschlange verarbeiten. Die spezifischen Schritte sind wie folgt: Holen Sie sich den Warteschlangenname: Nennen Sie ihn mit dem Präfix von "Warteschlange:" wie "Warteschlangen: My-Queue". Verwenden Sie den Befehl LPOP: Wischen Sie das Element aus dem Kopf der Warteschlange aus und geben Sie seinen Wert zurück, z. B. die LPOP-Warteschlange: my-queue. Verarbeitung leerer Warteschlangen: Wenn die Warteschlange leer ist, gibt LPOP NIL zurück, und Sie können überprüfen, ob die Warteschlange existiert, bevor Sie das Element lesen.

So sehen Sie die Serverversion von Redis So sehen Sie die Serverversion von Redis Apr 10, 2025 pm 01:27 PM

FRAGE: Wie kann man die Redis -Server -Version anzeigen? Verwenden Sie das Befehlszeilen-Tool-REDIS-CLI-Verssion, um die Version des angeschlossenen Servers anzuzeigen. Verwenden Sie den Befehl "Info Server", um die interne Version des Servers anzuzeigen, und muss Informationen analysieren und zurückgeben. Überprüfen Sie in einer Cluster -Umgebung die Versionskonsistenz jedes Knotens und können automatisch mit Skripten überprüft werden. Verwenden Sie Skripte, um die Anzeigeversionen zu automatisieren, z. B. eine Verbindung mit Python -Skripten und Druckversionsinformationen.

Wie sicher ist Navicats Passwort? Wie sicher ist Navicats Passwort? Apr 08, 2025 pm 09:24 PM

Die Kennwortsicherheit von Navicat beruht auf der Kombination aus symmetrischer Verschlüsselung, Kennwortstärke und Sicherheitsmaßnahmen. Zu den spezifischen Maßnahmen gehören: Verwenden von SSL -Verbindungen (vorausgesetzt, dass der Datenbankserver das Zertifikat unterstützt und korrekt konfiguriert), die Navicat regelmäßig Aktualisierung unter Verwendung von sichereren Methoden (z. B. SSH -Tunneln), die Einschränkung von Zugriffsrechten und vor allem niemals Kennwörter aufzeichnen.

See all articles