pip install --pre --upgrade bigdl-llm[all]



Verwenden Sie BigDL-LLM, um zig Milliarden Parameter-LLM-Inferenzen sofort zu beschleunigen
Wir treten in eine neue Ära der KI ein, die durch das Large Language Model (LLM) vorangetrieben wird und eine immer wichtigere Rolle in verschiedenen Anwendungen wie Kundenservice, virtuellen Assistenten, Inhaltserstellung, Programmierunterstützung usw. spielt.
Da jedoch der Umfang von LLM immer weiter zunimmt, steigt auch der Ressourcenverbrauch, der für die Ausführung großer Modelle erforderlich ist, was dazu führt, dass der Betrieb immer langsamer wird, was die Entwickler von KI-Anwendungen vor erhebliche Herausforderungen stellt.
Zu diesem Zweck hat Intel kürzlich eine große Open-Source-Modellbibliothek namens BigDL-LLM[1] auf den Markt gebracht, die KI-Entwicklern und -Forschern dabei helfen kann, die Optimierung großer Sprachmodelle auf der Intel® -Plattform zu beschleunigen und zu verbessern Die Erfahrung mit der Verwendung großer Sprachmodelle auf der Intel ® -Plattform.
Das Folgende zeigt das 33 Milliarden Parameter große Sprachmodell Vicuna-33b-v1.3[2], das mit BigDL-LLM auf einer Maschine beschleunigt wird, die mit Intel® Xeon® Platinum 8468 ausgestattet ist Der Prozessor führt die Echtzeiteffekte auf dem Server aus.
△Tatsächliche Geschwindigkeit beim Ausführen eines großen Sprachmodells mit 33 Milliarden Parametern auf einem Server mit Intel® Xeon® Platinum 8468-Prozessor (Echtzeit-Bildschirmaufzeichnung)
BigDL-LLM: Intel® Open-Source-Bibliothek zur Beschleunigung großer Sprachmodelle auf der Plattform
BigDL-LLM ist eine Open-Source-Bibliothek, die sich auf die Optimierung und Beschleunigung großer Sprachmodelle konzentriert. Sie ist Teil von BigDL und wird unter der Apache 2.0-Lizenz veröffentlicht. Sie bietet eine Vielzahl von Low-Source-Modellen. Präzisionsoptimierung auf höchstem Niveau (z. B. INT4/INT5/INT8) und kann eine Vielzahl von Intel®
CPU-integrierten Hardwarebeschleunigungstechnologien (AVX/VNNI/AMX usw.) und die neueste Softwareoptimierung nutzen, um große Sprachmodelle zu ermöglichen Intel® Erzielen Sie eine effizientere Optimierung und einen schnelleren Betrieb auf der Plattform. Eine wichtige Funktion von BigDL-LLM besteht darin, dass Sie für Modelle, die auf der Hugging Face Transformers-API basieren, nur eine Codezeile ändern müssen, um das Modell zu beschleunigen. Theoretisch kann es die Ausführung von
jedemTransformers-Modell unterstützen. Das ist nützlich für diejenigen, die mit Transformers vertraut sind. Die API-Entwickler sind sehr freundlich. Zusätzlich zur Transformers-API verwenden viele Leute auch LangChain, um große Sprachmodellanwendungen zu entwickeln.
Zu diesem Zweck bietet BigDL-LLM auch eine benutzerfreundliche LangChain-Integration[3]
, die es Entwicklern ermöglicht, BigDL-LLM einfach zu verwenden, um neue Anwendungen zu entwickeln oder bestehende Anwendungen basierend auf Transformers API oder LangChain API zu migrieren.Darüber hinaus können Sie für allgemeine große PyTorch-Sprachmodelle (Modelle, die keine Transformer- oder LangChain-API verwenden) auch die Ein-Klick-Beschleunigung der BigDL-LLM-Optimierungsmodell-API verwenden, um die Leistung zu verbessern. Einzelheiten finden Sie in der GitHub-README-Datei[4]
und in der offiziellen Dokumentation[5]. BigDL-LLM bietet außerdem eine große Anzahl häufig verwendeter Open-Source-LLM-Beschleunigungsbeispiele (z. B. Beispiele mit der Transformers-API[6]
und Beispiele mit der LangChain-API[7] sowie Tutorials (einschließlich unterstützender Jupyter-Notebooks) [8], praktisch für Entwickler, um schnell loszulegen und es auszuprobieren Installation und Verwendung: Einfacher Installationsprozess und benutzerfreundliche API-Schnittstelle
Die Installation von BigDL-LLM ist sehr praktisch. Führen Sie einfach Folgendes aus Befehl:pip install --pre --upgrade bigdl-llm[all]
Nach dem Login kopieren
pip install --pre --upgrade bigdl-llm[all]
△
Wenn der Code nicht vollständig angezeigt wird, schieben Sie ihn bitte nach links oder rechts Es ist auch sehr einfach, BigDL-LLM zu verwenden, um große Modelle zu beschleunigen (hier verwenden wir nur die API im Transformers-Stil). als Beispiel)
Verwenden Sie die BigDL-LLM Transformer-API, um das Modell zu beschleunigen. Der anschließende Verwendungsprozess ist vollständig der gleiche wie bei nativen Transformern Die Verwendung der BigDL-LLM-API ist fast die gleiche wie die der Transformers-API – der Benutzer muss nur den Import ändern und ihn im from_pretrained-Parameter festlegen. Präzisionsquantisierung während des Modellladevorgangs und Verwendung verschiedener Software- und Hardwarebeschleunigungstechnologien zur Optimierung während des nachfolgenden Inferenzprozesses#Load Hugging Face Transformers model with INT4 optimizationsfrom bigdl.llm. transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
Wenn der Code nicht vollständig angezeigt wird, schieben Sie ihn bitte nach links oder rechts
示例:快速实现一个基于大语言模型的语音助手应用
下文将以 LLM 常见应用场景“语音助手”为例,展示采用 BigDL-LLM 快速实现 LLM 应用的案例。通常情况下,语音助手应用的工作流程分为以下两个部分:
△图 1. 语音助手工作流程示意
- 语音识别——使用语音识别模型(本示例采用了 Whisper 模型[9] )将用户的语音转换为文本;
- 文本生成——将 1 中输出的文本作为提示语 (prompt),使用一个大语言模型(本示例采用了 Llama2[10] )生成回复。
以下是本文使用 BigDL-LLM 和 LangChain[11] 来搭建语音助手应用的过程:
在语音识别阶段:第一步,加载预处理器 processor 和语音识别模型 recog_model。本示例中使用的识别模型 Whisper 是一个 Transformers 模型。
只需使用 BigDL-LLM 中的 AutoModelForSpeechSeq2Seq 并设置参数 load_in_4bit=True,就能够以 INT4 精度加载并加速这一模型,从而显著缩短模型推理用时。
#processor = WhisperProcessor .from_pretrained(recog_model_path)recog_model = AutoModelForSpeechSeq2Seq .from_pretrained(recog_model_path, load_in_4bit=True)
△若代码显示不全,请左右滑动
第二步,进行语音识别。首先使用处理器从输入语音中提取输入特征,然后使用识别模型预测 token,并再次使用处理器将 token 解码为自然语言文本。
input_features = processor(frame_data,sampling_rate=audio.sample_rate,return_tensor=“pt”).input_featurespredicted_ids = recogn_model.generate(input_features, forced_decoder_ids=forced_decoder_ids)text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
△若代码显示不全,请左右滑动
在文本生成阶段,首先使用 BigDL-LLM 的 TransformersLLM API 创建一个 LangChain 语言模型(TransformersLLM 是在 BigDL-LLM 中定义的语言链 LLM 集成)。
可以使用这个 API 来加载 Hugging Face Transformers 的任何模型
llm = TransformersLLM . from_model_id(model_id=llm_model_path,model_kwargs={"temperature": 0, "max_length": args.max_length, "trust_remote_code": True},)
△若代码显示不全,请左右滑动
然后,创建一个正常的对话链 LLMChain,并将已经创建的 llm 设置为输入参数。
# The following code is complete the same as the use-casevoiceassistant_chain = LLMChain(llm=llm, prompt=prompt,verbose=True,memory=ConversationBufferWindowMemory(k=2),)
△若代码显示不全,请左右滑动
以下代码将使用一个链条来记录所有对话历史,并将其适当地格式化为大型语言模型的输入。这样,我们可以生成合适的回复。只需将识别模型生成的文本作为 "human_input" 输入即可。代码如下:
response_text = voiceassistant_chain .predict(human_input=text, stop=”\n\n”)
△若代码显示不全,请左右滑动
最后,将语音识别和文本生成步骤放入循环中,即可在多轮对话中与该“语音助手”交谈。您可访问底部 [12] 链接,查看完整的示例代码,并使用自己的电脑进行尝试。快用 BigDL-LLM 来快速搭建自己的语音助手吧!
作者简介
黄晟盛是英特尔公司的资深架构师,黄凯是英特尔公司的AI框架工程师,戴金权是英特尔院士、大数据技术全球CTO和BigDL项目的创始人,他们都从事着与大数据和AI相关的工作
Das obige ist der detaillierte Inhalt vonVerwenden Sie BigDL-LLM, um zig Milliarden Parameter-LLM-Inferenzen sofort zu beschleunigen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Letzte Woche wurde OpenAI inmitten der Welle interner Kündigungen und externer Kritik von internen und externen Problemen geplagt: - Der Verstoß gegen die Schwester der Witwe löste weltweit hitzige Diskussionen aus - Mitarbeiter, die „Overlord-Klauseln“ unterzeichneten, wurden einer nach dem anderen entlarvt – Internetnutzer listeten Ultramans „ Sieben Todsünden“ – Gerüchtebekämpfung: Laut durchgesickerten Informationen und Dokumenten, die Vox erhalten hat, war sich die leitende Führung von OpenAI, darunter Altman, dieser Eigenkapitalrückgewinnungsbestimmungen wohl bewusst und hat ihnen zugestimmt. Darüber hinaus steht OpenAI vor einem ernsten und dringenden Problem – der KI-Sicherheit. Die jüngsten Abgänge von fünf sicherheitsrelevanten Mitarbeitern, darunter zwei der prominentesten Mitarbeiter, und die Auflösung des „Super Alignment“-Teams haben die Sicherheitsprobleme von OpenAI erneut ins Rampenlicht gerückt. Das Fortune-Magazin berichtete, dass OpenA

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S
