


Ersetzen Sie mithilfe von C++ jeden Knoten in einer verknüpften Liste durch die entsprechende Anzahl von Knoten
Angesichts einer verknüpften Liste müssen wir das Element finden, das größer als die rechte Seite des aktuellen Elements in der angegebenen verknüpften Liste ist. Die Anzahl dieser Elemente muss in den Wert des aktuellen Knotens eingesetzt werden.
Nehmen wir eine verknüpfte Liste mit den folgenden Zeichen und ersetzen Sie jeden Knoten durch seine Überschreitungsanzahl –
4 -> 6 -> 1 -> 4 -> 6 -> 8 -> 5 -> 8 -> 3
Beginnen Sie rückwärts und durchlaufen Sie die verknüpfte Liste (damit wir uns nicht um das aktuelle Element links kümmern müssen). Unsere Datenstruktur verfolgt das aktuelle Element in sortierter Reihenfolge. Ersetzt das aktuelle Element in der sortierten Datenstruktur durch die Gesamtzahl der darüber liegenden Elemente.
Durch die rekursive Methode wird die verknüpfte Liste rückwärts durchlaufen. Eine weitere Option ist PBDS. Mithilfe von PBDS können wir Elemente finden, die unbedingt kleiner als ein bestimmter Schlüssel sind. Wir können das aktuelle Element addieren und vom strikt kleineren Element subtrahieren.
PBDS erlaubt keine doppelten Elemente. Zum Zählen benötigen wir jedoch wiederholte Elemente. Um jeden Eintrag eindeutig zu machen, fügen wir ein Paar (erstes = Element, zweites = Index) in das PBDS ein. Um die Gesamtzahl der Elemente zu ermitteln, die dem aktuellen Element entsprechen, verwenden wir eine Hash-Map. Eine Hash-Map speichert die Anzahl des Vorkommens jedes Elements (grundlegende Ganzzahl-zu-Ganzzahl-Zuordnung).
Beispiel
Das Folgende ist ein C++-Programm, um jeden Knoten in einer verknüpften Liste durch seine transzendente Nummer zu ersetzen -
#include <iostream> #include <unordered_map> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #define oset tree<pair<int, int>, null_type,less<pair<int, int>>, rb_tree_tag, tree_order_statistics_node_update> using namespace std; using namespace __gnu_pbds; class Node { public: int value; Node * next; Node (int value) { this->value = value; next = NULL; } }; void solve (Node * head, oset & os, unordered_map < int, int >&mp, int &count){ if (head == NULL) return; solve (head->next, os, mp, count); count++; os.insert ( { head->value, count} ); mp[head->value]++; int numberOfElements = count - mp[head->value] - os.order_of_key ({ head->value, -1 }); head->value = numberOfElements; } void printList (Node * head) { while (head) { cout << head->value << (head->next ? "->" : ""); head = head->next; } cout << "\n"; } int main () { Node * head = new Node (43); head->next = new Node (65); head->next->next = new Node (12); head->next->next->next = new Node (46); head->next->next->next->next = new Node (68); head->next->next->next->next->next = new Node (85); head->next->next->next->next->next->next = new Node (59); head->next->next->next->next->next->next->next = new Node (85); head->next->next->next->next->next->next->next->next = new Node (37); oset os; unordered_map < int, int >mp; int count = 0; printList (head); solve (head, os, mp, count); printList (head); return 0; }
Ausgabe
43->65->12->46->68->85->59->85->30 6->3->6->4->2->0->1->0->0
Anleitung
Für das erste Element gilt also element = [65, 46, 68, 85, 59, 85], also 6
Zweites Element, Element = [68, 85, 85], also 3
Alle Elemente und so weiter
Fazit
Diese Frage erfordert ein gewisses Verständnis der Datenstruktur und Rekursion. Wir müssen Methoden entwerfen und dann auf der Grundlage von Beobachtungen und Wissen Datenstrukturen ableiten, die unseren Anforderungen entsprechen. Wenn Ihnen dieser Artikel gefallen hat, lesen Sie weiter und bleiben Sie auf dem Laufenden.
Das obige ist der detaillierte Inhalt vonErsetzen Sie mithilfe von C++ jeden Knoten in einer verknüpften Liste durch die entsprechende Anzahl von Knoten. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.

Die Wahrheit über Probleme mit der Dateibetrieb: Dateiöffnung fehlgeschlagen: unzureichende Berechtigungen, falsche Pfade und Datei besetzt. Das Schreiben von Daten fehlgeschlagen: Der Puffer ist voll, die Datei ist nicht beschreibbar und der Speicherplatz ist nicht ausreichend. Andere FAQs: Langsame Dateitraversal, falsche Textdateicodierung und Binärdatei -Leser -Fehler.

Artikel erörtert den effektiven Einsatz von RValue -Referenzen in C für Bewegungssemantik, perfekte Weiterleitung und Ressourcenmanagement, wobei Best Practices und Leistungsverbesserungen hervorgehoben werden. (159 Charaktere)

Die Berechnung von C35 ist im Wesentlichen kombinatorische Mathematik, die die Anzahl der aus 3 von 5 Elementen ausgewählten Kombinationen darstellt. Die Berechnungsformel lautet C53 = 5! / (3! * 2!), Was direkt durch Schleifen berechnet werden kann, um die Effizienz zu verbessern und Überlauf zu vermeiden. Darüber hinaus ist das Verständnis der Art von Kombinationen und Beherrschen effizienter Berechnungsmethoden von entscheidender Bedeutung, um viele Probleme in den Bereichen Wahrscheinlichkeitsstatistik, Kryptographie, Algorithmus -Design usw. zu lösen.

In dem Artikel wird die Verwendung von Move Semantics in C erörtert, um die Leistung zu verbessern, indem unnötiges Kopieren vermieden wird. Es umfasst die Implementierung von Bewegungskonstruktoren und Zuordnungsbetreibern unter Verwendung von STD :: MOVE

C -Sprachfunktionen sind die Grundlage für die Code -Modularisierung und das Programmaufbau. Sie bestehen aus Deklarationen (Funktionsüberschriften) und Definitionen (Funktionskörper). C Sprache verwendet standardmäßig Werte, um Parameter zu übergeben, aber externe Variablen können auch mit dem Adresspass geändert werden. Funktionen können oder haben keinen Rückgabewert, und der Rückgabewerttyp muss mit der Deklaration übereinstimmen. Die Benennung von Funktionen sollte klar und leicht zu verstehen sein und mit Kamel oder Unterstrich die Nomenklatur. Befolgen Sie das Prinzip der einzelnen Verantwortung und behalten Sie die Funktion ein, um die Wartbarkeit und die Lesbarkeit zu verbessern.

Die Definition des C -Sprachfunktionsname enthält: Rückgabewerttyp, Funktionsname, Parameterliste und Funktionsbehörde. Funktionsnamen sollten klar, präzise und einheitlich sein, um Konflikte mit Schlüsselwörtern zu vermeiden. Funktionsnamen haben Bereiche und können nach der Deklaration verwendet werden. Funktionszeiger ermöglichen es, Funktionen zu übergeben oder als Argumente zugeordnet zu werden. Zu den häufigen Fehlern gehören die Benennung von Konflikten, die Nichtübereinstimmung von Parametertypen und nicht deklarierte Funktionen. Die Leistungsoptimierung konzentriert sich auf das Funktionsdesign und die Implementierung, während ein klarer und einfach zu lesender Code von entscheidender Bedeutung ist.

Obwohl C und C# Ähnlichkeiten haben, sind sie völlig unterschiedlich: C ist eine prozessorientierte, manuelle Speicherverwaltung und plattformabhängige Sprache, die für die Systemprogrammierung verwendet wird. C# ist eine objektorientierte, Müllsammlung und plattformunabhängige Sprache, die für Desktop-, Webanwendungs- und Spielentwicklung verwendet wird.
