


Wie füge ich mit Pandas in Python zwei CSV-Dateien nach bestimmten Spalten zusammen?
CSV-Dateien (Comma Separated Values) werden häufig zum Speichern und Austauschen von Daten in einem einfachen Format verwendet. Bei vielen Datenverarbeitungsaufgaben besteht die Notwendigkeit, zwei oder mehr CSV-Dateien basierend auf bestimmten Spalten zusammenzuführen. Glücklicherweise kann dies mithilfe der Pandas-Bibliothek in Python leicht erreicht werden.
In diesem Artikel erfahren Sie, wie Sie mit Pandas in Python zwei CSV-Dateien nach bestimmten Spalten zusammenführen.
Was ist die Pandas-Bibliothek?
Pandas ist eine Open-Source-Bibliothek für die Kontrolle und Inspektion von Python-Nachrichten. Es bietet Werkzeuge für die Arbeit mit strukturierten Daten (z. B. Tabellen-, Zeitreihen- und mehrdimensionalen Daten) und Hochleistungsdatenstrukturen. Pandas wird häufig in den Bereichen Finanzen, Datenwissenschaft, maschinelles Lernen und anderen Bereichen eingesetzt, in denen Datenmanipulation erforderlich ist.
Schritte zum Zusammenführen zweier CSV-Dateien nach bestimmten Spalten in Python
Hier sind die vollständigen Schritte zum Zusammenführen zweier CSV-Dateien nach bestimmten Spalten in Python mithilfe der Pandas-Bibliothek -
Schritt 1: Importieren Sie die Pandas-Bibliothek
Der erste Schritt zum Zusammenführen zweier CSV-Dateien besteht darin, die Pandas-Bibliothek zu importieren. Pandas ist eine leistungsstarke Python-Datenanalysebibliothek. Es bietet Datenstrukturen für die effiziente Speicherung und Bearbeitung großer Datenmengen. Um Pandas verwenden zu können, müssen wir es zunächst in ein Python-Programm importieren. Wir können dies mit dem folgenden Befehl tun -
import pandas as pd
Schritt 2: Lesen Sie die CSV-Datei
Unser nächster Schritt besteht darin, die beiden CSV-Dateien zu lesen, die wir zusammenführen möchten. Mit der Funktion read_csv() von Pandas können wir die CSV-Datei in einen Pandas-DataFrame einlesen. Wir müssen den Dateipfad oder die URL der CSV-Datei als Argument für die Funktion read_csv() angeben. Zum Beispiel -
df1 = pd.read_csv('file1.csv') df2 = pd.read_csv('file2.csv')
Schritt 3: CSV-Dateien zusammenführen
Nachdem Sie die CSV-Dateien in Pandas DataFrames eingelesen haben, ist es nun an der Zeit, sie basierend auf bestimmten Spalten mithilfe der Funktion merge() zusammenzuführen. Die Funktion merge() nimmt zwei DataFrames als Eingabe und führt sie basierend auf gemeinsamen Spalten zusammen. Dies ist die grundlegende Syntax -
merged_df = pd.merge(df1, df2, on='column_name')
In diesem Beispiel ist merged_df ein neuer DataFrame, der die zusammengeführten Daten von df1 und df2 enthält. Der on-Parameter gibt den Namen der gemeinsamen Spalte an, die die beiden DataFrames zusammenführt.
Angenommen, wir haben zwei CSV-Dateien „sales.csv“ und „customers.csv“. Beide Dateien enthalten eine Spalte namens CustomerID. Wir möchten zwei Dateien basierend auf der Spalte „CustomerID“ zusammenführen. Wir können das schaffen -
sales = pd.read_csv('sales.csv') customers = pd.read_csv('customers.csv') merged_df = pd.merge(sales, customers, on='CustomerID')
Schritt 4: Behandeln Sie fehlende Werte (falls vorhanden)
Beim Zusammenführen von zwei CSV-Dateien basierend auf bestimmten Spalten können im zusammengeführten DataFrame Werte fehlen. Diese fehlenden Werte können auftreten, wenn in der entsprechenden Spalte einer der CSV-Dateien kein passender Wert vorhanden ist.
Um mit fehlenden Werten umzugehen, können wir die Funktion fillna() von Pandas verwenden, um sie durch Standard- oder berechnete Werte zu ersetzen. Mit dem folgenden Code können wir beispielsweise fehlende Werte durch die Zeichenfolge „Unknown“ -
ersetzenmerged_df.fillna('Unknown', inplace=True)
In diesem Beispiel verwenden wir die Funktion fillna(), um die fehlenden Werte im zusammengeführten DataFrame durch die Zeichenfolge „Unknown“ zu ersetzen. Wir haben auch den Inplace-Parameter als True angegeben, was bedeutet, dass der ursprüngliche DataFrame geändert wird, anstatt einen neuen DataFrame zu erstellen.
Beispiel 1: Verwendung der Funktion Merge()
In diesem Beispiel verwenden wir die Funktion merge() von Pandas, um zwei CSV-Dateien basierend auf bestimmten Spalten zusammenzuführen.
CSV Files
Angenommen, wir haben zwei CSV-Dateien: Mitarbeiter.csv und Abteilungen.csv. Die Datei „Employees.csv“ enthält die folgenden Daten -
Mitarbeiter-ID | Name | Abteilungs-ID | Gehalt |
---|---|---|---|
1 | John | 1 | 50000 |
2 | Sarah | 2 | 60000 |
3 | David | 1 | 55000 |
4 | Alex | 3 | 65000 |
5 | Emily | 2 | 55000 |
departments.csv enthält die folgenden Daten -
Abteilungs-ID | Abteilungsname |
---|---|
1 | IT |
2 | VERKAUF |
3 | Marketing |
4 | Personalwesen |
示例
import pandas as pd # Load CSV Files employees = pd.read_csv('employees.csv') departments = pd.read_csv('departments.csv') # Merge dataframes based on DepartmentID column merged_df = pd.merge(employees, departments, on='DepartmentID') # Print merged dataframe print(merged_df.head()) # Save merged dataframe to a new CSV file merged_df.to_csv('merged_employees_departments.csv', index=False)
输出
EmployeeID Name DepartmentID Salary DepartmentName 0 1 John 1 50000 IT 1 3 David 1 55000 IT 2 2 Sarah 2 60000 Sales 3 5 Emily 2 55000 Sales 4 4 Alex 3 65000 Marketing
示例 2:使用 Join() 函数
在本例中,我们将使用 Pandas 的 join() 方法根据特定列合并两个 CSV 文件。
CSV Files
假设我们有两个 CSV 文件:orders.csv 和customers.csv。 order.csv 文件包含以下数据 -
订单ID | 客户ID | 订单日期 | 总金额 |
---|---|---|---|
1 | 1 | 2022-05-01 | 100.0 |
2 | 3 | 2022-05-02 | 150.0 |
3 | 2 | 2022-05-03 | 200.0 |
4 | 1 | 2022-05-04 | 75.0 |
5 | 4 | 2022-05-05 | 120.0 |
customers.csv 文件包含以下数据 -
客户ID | 客户名称 | 电子邮件 |
---|---|---|
1 | 约翰 | john@example.com |
2 | 莎拉 | sarah@example.com |
3 | 大卫 | david@example.com |
4 | 艾米丽 | emily@example.com |
示例
import pandas as pd # Load CSV files orders = pd.read_csv('orders.csv') customers = pd.read_csv('customers.csv') # Join dataframes based on CustomerID column joined_df = orders.set_index('CustomerID').join(customers.set_index('CustomerID')) # Print joined dataframe print(joined_df.head()) # Save joined dataframe to a new CSV file joined_df.to_csv('joined_orders_customers.csv')
输出
OrderID OrderDate TotalAmount CustomerName Email CustomerID 1 1 2022-05-01 100.0 John john@example.com 1 4 2022-05-04 75.0 John john@example.com 2 3 2022-05-03 200.0 Sarah sarah@example.com 3 2 2022-05-02 150.0 David david@example.com 4 5 2022-05-05 120.0 Emily emily@example.com
使用 Pandas 的 merge() 函数,我们根据本例中的“id”列合并了两个 CSV 文件。作为合并两个 CSV 文件的结果的 DataFrame 除了“name_x”、“email_x”、“name_y”和“email_y”列之外还包括“id”列。
请注意,“name_y”和“email_y”段的组合 DataFrame 中缺少值,这些值与第二个 CSV 记录中没有匹配质量的行相关。如上一步所示,Pandas fillna() 和 dropna() 函数可用于处理这些缺失值。
结论
基于特定列合并两个 CSV 文件是一项常见的数据处理任务,可以使用 Python 中的 Pandas 库轻松实现。在本文中,我们学习了如何使用 Pandas 的 merge() 函数合并两个 CSV 文件。我们还讨论了如何处理缺失值以及如何将合并的 DataFrame 保存到新的 CSV 文件。
Das obige ist der detaillierte Inhalt vonWie füge ich mit Pandas in Python zwei CSV-Dateien nach bestimmten Spalten zusammen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

MySQL kann ohne Netzwerkverbindungen für die grundlegende Datenspeicherung und -verwaltung ausgeführt werden. Für die Interaktion mit anderen Systemen, Remotezugriff oder Verwendung erweiterte Funktionen wie Replikation und Clustering ist jedoch eine Netzwerkverbindung erforderlich. Darüber hinaus sind Sicherheitsmaßnahmen (wie Firewalls), Leistungsoptimierung (Wählen Sie die richtige Netzwerkverbindung) und die Datensicherung für die Verbindung zum Internet von entscheidender Bedeutung.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

MySQL Workbench kann eine Verbindung zu MariADB herstellen, vorausgesetzt, die Konfiguration ist korrekt. Wählen Sie zuerst "Mariadb" als Anschlusstyp. Stellen Sie in der Verbindungskonfiguration Host, Port, Benutzer, Kennwort und Datenbank korrekt ein. Überprüfen Sie beim Testen der Verbindung, ob der Mariadb -Dienst gestartet wird, ob der Benutzername und das Passwort korrekt sind, ob die Portnummer korrekt ist, ob die Firewall Verbindungen zulässt und ob die Datenbank vorhanden ist. Verwenden Sie in fortschrittlicher Verwendung die Verbindungspooling -Technologie, um die Leistung zu optimieren. Zu den häufigen Fehlern gehören unzureichende Berechtigungen, Probleme mit Netzwerkverbindung usw. Bei Debugging -Fehlern, sorgfältige Analyse von Fehlerinformationen und verwenden Sie Debugging -Tools. Optimierung der Netzwerkkonfiguration kann die Leistung verbessern

Für Produktionsumgebungen ist in der Regel ein Server erforderlich, um MySQL auszuführen, aus Gründen, einschließlich Leistung, Zuverlässigkeit, Sicherheit und Skalierbarkeit. Server haben normalerweise leistungsstärkere Hardware, redundante Konfigurationen und strengere Sicherheitsmaßnahmen. Bei kleinen Anwendungen mit niedriger Last kann MySQL auf lokalen Maschinen ausgeführt werden, aber Ressourcenverbrauch, Sicherheitsrisiken und Wartungskosten müssen sorgfältig berücksichtigt werden. Für eine größere Zuverlässigkeit und Sicherheit sollte MySQL auf Cloud oder anderen Servern bereitgestellt werden. Die Auswahl der entsprechenden Serverkonfiguration erfordert eine Bewertung basierend auf Anwendungslast und Datenvolumen.
