Inhaltsverzeichnis
Eingabe- und Ausgabeszenarien
Rekursion verwenden
Beispiel
Ausgabe
Verwenden Sie eine einfache Iteration
Fazit
Heim Backend-Entwicklung C++ Anzahl der ganzzahligen Lösungen der Gleichung x = b*(sumofdigits(x) ^ a)+c

Anzahl der ganzzahligen Lösungen der Gleichung x = b*(sumofdigits(x) ^ a)+c

Sep 08, 2023 pm 06:01 PM

方程 x = b*(sumofdigits(x) ^ a)+c 的整数解的数量

Angenommen, Sie erhalten drei ganze Zahlen a, b und c und es gibt eine Gleichung x = b* (sumofdigits(x)^a) +c. Hier ist sumofdigits(x ) die Summe aller Ziffern in x. Um alle möglichen Integrallösungen zu finden, die die Gleichung erfüllen, werden wir verschiedene Methoden in C++ untersuchen.

Eingabe- und Ausgabeszenarien

Unten sind die Werte von a, b und c angegeben. Als Ausgabe werden verschiedene Integrallösungen ausgegeben, die die Gleichung x = b* (sumofdigits(x)^a) +c erfüllen.

Input: a = 2, b = 2, c = -3
Output: 125, 447, 575
Nach dem Login kopieren

Im obigen Fall hat a einen Wert von 2, b hat einen Wert von 2, c hat einen Wert von -3 und die möglichen Werte von x sind 125, 447 und 575.

Betrachten Sie die Zahl 125. Die Summe ihrer Ziffern ist 8. Wenn Sie diesen Wert in die Gleichung b*(sum(x)^a) +c einsetzen, lautet die Antwort 125, was gleich x ist. Daher ist es eine mögliche Lösung für Gl.

Hinweis – Die Integrallösung dieser Gleichung liegt im Bereich 1 bis 109.

Rekursion verwenden

Wir können die rekursive Suche verwenden, um die Integrallösung einer gegebenen Gleichung zu finden.

Wir müssen eine Funktion namens sumOfDigits() erstellen, die die Summe der Ziffern einer beliebigen Zahl N berechnet.

  • Iterieren Sie über N Zahlen mit den Modulo- und Divisionsoperatoren.

  • Der Modulo-Operator wird verwendet, um die letzte Ziffer von N zu extrahieren.

  • Fügen Sie nach jeder Iteration die in der Variablen sum gespeicherten Zahlen nacheinander hinzu.

Wir erstellen eine Funktion integralSolutions(), um die Integrallösungen zu berechnen.

  • Es verwendet die Funktion sumOfDigits, um die Summe der Ziffern von x zu berechnen.

  • Als nächstes erhöhen wir die Summe mithilfe einer for-Schleife hoch a.

  • Wir bewerten die rechte Seite der Gleichung, indem wir b mit Leistung multiplizieren und c hinzufügen.

  • Wenn der Wert von x gleich dem Wert auf der rechten Seite ist, wird es als ganzzahlige Lösung betrachtet.

Als nächstes haben wir die rekursive Funktion, um nach Integrallösungen innerhalb eines bestimmten Bereichs zu suchen.

Beispiel

#include <iostream>
using namespace std;

int sumOfDigits(int N) {
   int sum = 0;
   while (N != 0) {
      sum += N % 10; // addition of the last digit of N
      N /= 10;
   }
   return sum;
}
void integralSolutions(int x, int a, int b, int c) {
   int sum = sumOfDigits(x);
   int power = 1;
   for (int j = 0; j < a; j++) {
      power *= sum;
   }
   int rightHandSide = b * power + c;
   if (x == rightHandSide) {
      std::cout << "Integral solution: " << x << std::endl;
   }
}
void recursion(int start, int end, int a, int b, int c) {
   if (start > end) {
      return;
   }
   integralSolutions(start, a, b, c);
   recursion(start + 1, end, a, b, c);
}
int main() {
   int a = 1, b = 3, c = 5;
   recursion(1, 100000, a, b, c);
   return 0;
}
Nach dem Login kopieren

Ausgabe

Integral solution: 11
Integral solution: 38
Nach dem Login kopieren

Segmentierungsfehler Dieser Fehler tritt auf, wenn der Endwert des angegebenen Bereichs in einer rekursiven Suche 100000 überschreitet. Darüber hinaus kann man also keine x-Werte haben.

Verwenden Sie eine einfache Iteration

Wenn Sie eine ganzzahlige Lösung für x größer als 100.000 wünschen, verwenden wir keine Rekursion. Hier verwenden wir eine einfache Iteration von x von 1 bis 109 und vergleichen sie mit dem Wert auf der rechten Seite der Gleichung.

Beispiel

#include <iostream>
using namespace std;

int sumOfDigits(int N) {
   int sum = 0;
   while (N != 0) {
      sum += N % 10;
      N /= 10;
   }
   return sum;
}

bool integralSolution(int x, int a, int b, int c) {
   int sum = sumOfDigits(x);
   int power = 1;
   for (int i = 0; i < a; i++) {
      power *= sum;
   }
   int rightHandSide = b * power + c;
   return x == rightHandSide;
}

int main() {
   int a = 3, b = 5, c = 8;
   // x ranges from 1 to 109
   for (int x = 1; x <= 1000000000; x++) {
      if (integralSolution(x, a, b, c)) {
         std::cout << "Integral solution: " << x << std::endl;
      }
   }
   return 0;
}
Nach dem Login kopieren

Ausgabe

Integral solution: 53248
Integral solution: 148963
Nach dem Login kopieren

Fazit

Wir haben Möglichkeiten untersucht, integrale Lösungen für die Gleichung x = b* (sumofdigits(x)^a) +c zu finden, einschließlich der Verwendung von Rekursion oder einfacher Iteration. Rekursive Methoden ermöglichen eine flexible Spezifizierung des Lösungsspektrums. Dies erhöht jedoch die zeitliche Komplexität und kann bei einem größeren Wertebereich zu Segmentierungsfehlern führen, was zu einem Stapelüberlauf führt.

Iterative Methoden sind hinsichtlich Zeitkomplexität und Speicherverbrauch effizient. Es bietet jedoch begrenzte Flexibilität und komplexeren Code. Daher haben beide Methoden ihre eigenen Vor- und Nachteile. Je nach Bedarf können Sie eine der Methoden wählen.

Das obige ist der detaillierte Inhalt vonAnzahl der ganzzahligen Lösungen der Gleichung x = b*(sumofdigits(x) ^ a)+c. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

C Sprachdatenstruktur: Datenrepräsentation und Betrieb von Bäumen und Grafiken C Sprachdatenstruktur: Datenrepräsentation und Betrieb von Bäumen und Grafiken Apr 04, 2025 am 11:18 AM

C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.

Wie funktioniert die C -Standard -Vorlagenbibliothek (STL)? Wie funktioniert die C -Standard -Vorlagenbibliothek (STL)? Mar 12, 2025 pm 04:50 PM

In diesem Artikel werden die C -Standard -Vorlagenbibliothek (STL) erläutert, die sich auf seine Kernkomponenten konzentriert: Container, Iteratoren, Algorithmen und Funktoren. Es wird beschrieben, wie diese interagieren, um die generische Programmierung, die Verbesserung der Codeeffizienz und die Lesbarkeit t zu ermöglichen

Wie benutze ich Algorithmen aus der STL (sortieren, finden, transformieren usw.) effizient? Wie benutze ich Algorithmen aus der STL (sortieren, finden, transformieren usw.) effizient? Mar 12, 2025 pm 04:52 PM

Dieser Artikel beschreibt die effiziente Verwendung von STL -Algorithmus in c. Es betont die Auswahl der Datenstruktur (Vektoren vs. Listen), Algorithmus -Komplexitätsanalyse (z. B. std :: sortieren vs. std :: partial_sort), Iteratoranwendungen und parallele Ausführung. Häufige Fallstricke wie

Wie verwende ich RValue -Referenzen effektiv in C? Wie verwende ich RValue -Referenzen effektiv in C? Mar 18, 2025 pm 03:29 PM

Artikel erörtert den effektiven Einsatz von RValue -Referenzen in C für Bewegungssemantik, perfekte Weiterleitung und Ressourcenmanagement, wobei Best Practices und Leistungsverbesserungen hervorgehoben werden. (159 Charaktere)

Wie gehe ich effektiv mit Ausnahmen in C um? Wie gehe ich effektiv mit Ausnahmen in C um? Mar 12, 2025 pm 04:56 PM

In diesem Artikel wird die effektive Ausnahmebehandlung in C, Covering Try, Catch und Wurp Mechanics, beschrieben. Es betont Best Practices wie Raii, die Vermeidung unnötiger Fangblöcke und die Protokollierung von Ausnahmen für robusten Code. Der Artikel befasst sich auch mit Perf

Wie verwende ich Bereiche in C 20 für ausdrucksstärkere Datenmanipulationen? Wie verwende ich Bereiche in C 20 für ausdrucksstärkere Datenmanipulationen? Mar 17, 2025 pm 12:58 PM

C 20 -Bereiche verbessern die Datenmanipulation mit Ausdruckskraft, Komposition und Effizienz. Sie vereinfachen komplexe Transformationen und integrieren sich in vorhandene Codebasen, um eine bessere Leistung und Wartbarkeit zu erhalten.

Wie verwende ich die Semantik in C, um die Leistung zu verbessern? Wie verwende ich die Semantik in C, um die Leistung zu verbessern? Mar 18, 2025 pm 03:27 PM

In dem Artikel wird die Verwendung von Move Semantics in C erörtert, um die Leistung zu verbessern, indem unnötiges Kopieren vermieden wird. Es umfasst die Implementierung von Bewegungskonstruktoren und Zuordnungsbetreibern unter Verwendung von STD :: MOVE

Wie funktioniert der dynamische Versand in C und wie wirkt sich dies auf die Leistung aus? Wie funktioniert der dynamische Versand in C und wie wirkt sich dies auf die Leistung aus? Mar 17, 2025 pm 01:08 PM

In dem Artikel wird der dynamische Versand in C, seine Leistungskosten und Optimierungsstrategien erörtert. Es unterstreicht Szenarien, in denen der dynamische Versand die Leistung beeinflusst, und vergleicht sie mit statischer Versand, wobei die Kompromisse zwischen Leistung und Betonung betont werden

See all articles