


Anzahl der ganzzahligen Lösungen der Gleichung x = b*(sumofdigits(x) ^ a)+c
Angenommen, Sie erhalten drei ganze Zahlen a, b und c und es gibt eine Gleichung x = b* (sumofdigits(x)^a) +c. Hier ist sumofdigits(x ) die Summe aller Ziffern in x. Um alle möglichen Integrallösungen zu finden, die die Gleichung erfüllen, werden wir verschiedene Methoden in C++ untersuchen.
Eingabe- und Ausgabeszenarien
Unten sind die Werte von a, b und c angegeben. Als Ausgabe werden verschiedene Integrallösungen ausgegeben, die die Gleichung x = b* (sumofdigits(x)^a) +c erfüllen.
Input: a = 2, b = 2, c = -3 Output: 125, 447, 575
Im obigen Fall hat a einen Wert von 2, b hat einen Wert von 2, c hat einen Wert von -3 und die möglichen Werte von x sind 125, 447 und 575.
Betrachten Sie die Zahl 125. Die Summe ihrer Ziffern ist 8. Wenn Sie diesen Wert in die Gleichung b*(sum(x)^a) +c einsetzen, lautet die Antwort 125, was gleich x ist. Daher ist es eine mögliche Lösung für Gl.
Hinweis – Die Integrallösung dieser Gleichung liegt im Bereich 1 bis 109.
Rekursion verwenden
Wir können die rekursive Suche verwenden, um die Integrallösung einer gegebenen Gleichung zu finden.
Wir müssen eine Funktion namens sumOfDigits() erstellen, die die Summe der Ziffern einer beliebigen Zahl N berechnet.
Iterieren Sie über N Zahlen mit den Modulo- und Divisionsoperatoren.
Der Modulo-Operator wird verwendet, um die letzte Ziffer von N zu extrahieren.
Fügen Sie nach jeder Iteration die in der Variablen sum gespeicherten Zahlen nacheinander hinzu.
Wir erstellen eine Funktion integralSolutions(), um die Integrallösungen zu berechnen.
Es verwendet die Funktion sumOfDigits, um die Summe der Ziffern von x zu berechnen.
Als nächstes erhöhen wir die Summe mithilfe einer for-Schleife hoch a.
Wir bewerten die rechte Seite der Gleichung, indem wir b mit Leistung multiplizieren und c hinzufügen.
Wenn der Wert von x gleich dem Wert auf der rechten Seite ist, wird es als ganzzahlige Lösung betrachtet.
Als nächstes haben wir die rekursive Funktion, um nach Integrallösungen innerhalb eines bestimmten Bereichs zu suchen.
Beispiel
#include <iostream> using namespace std; int sumOfDigits(int N) { int sum = 0; while (N != 0) { sum += N % 10; // addition of the last digit of N N /= 10; } return sum; } void integralSolutions(int x, int a, int b, int c) { int sum = sumOfDigits(x); int power = 1; for (int j = 0; j < a; j++) { power *= sum; } int rightHandSide = b * power + c; if (x == rightHandSide) { std::cout << "Integral solution: " << x << std::endl; } } void recursion(int start, int end, int a, int b, int c) { if (start > end) { return; } integralSolutions(start, a, b, c); recursion(start + 1, end, a, b, c); } int main() { int a = 1, b = 3, c = 5; recursion(1, 100000, a, b, c); return 0; }
Ausgabe
Integral solution: 11 Integral solution: 38
Segmentierungsfehler Dieser Fehler tritt auf, wenn der Endwert des angegebenen Bereichs in einer rekursiven Suche 100000 überschreitet. Darüber hinaus kann man also keine x-Werte haben.
Verwenden Sie eine einfache Iteration
Wenn Sie eine ganzzahlige Lösung für x größer als 100.000 wünschen, verwenden wir keine Rekursion. Hier verwenden wir eine einfache Iteration von x von 1 bis 109 und vergleichen sie mit dem Wert auf der rechten Seite der Gleichung.
Beispiel
#include <iostream> using namespace std; int sumOfDigits(int N) { int sum = 0; while (N != 0) { sum += N % 10; N /= 10; } return sum; } bool integralSolution(int x, int a, int b, int c) { int sum = sumOfDigits(x); int power = 1; for (int i = 0; i < a; i++) { power *= sum; } int rightHandSide = b * power + c; return x == rightHandSide; } int main() { int a = 3, b = 5, c = 8; // x ranges from 1 to 109 for (int x = 1; x <= 1000000000; x++) { if (integralSolution(x, a, b, c)) { std::cout << "Integral solution: " << x << std::endl; } } return 0; }
Ausgabe
Integral solution: 53248 Integral solution: 148963
Fazit
Wir haben Möglichkeiten untersucht, integrale Lösungen für die Gleichung x = b* (sumofdigits(x)^a) +c zu finden, einschließlich der Verwendung von Rekursion oder einfacher Iteration. Rekursive Methoden ermöglichen eine flexible Spezifizierung des Lösungsspektrums. Dies erhöht jedoch die zeitliche Komplexität und kann bei einem größeren Wertebereich zu Segmentierungsfehlern führen, was zu einem Stapelüberlauf führt.
Iterative Methoden sind hinsichtlich Zeitkomplexität und Speicherverbrauch effizient. Es bietet jedoch begrenzte Flexibilität und komplexeren Code. Daher haben beide Methoden ihre eigenen Vor- und Nachteile. Je nach Bedarf können Sie eine der Methoden wählen.
Das obige ist der detaillierte Inhalt vonAnzahl der ganzzahligen Lösungen der Gleichung x = b*(sumofdigits(x) ^ a)+c. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.

In diesem Artikel werden die C -Standard -Vorlagenbibliothek (STL) erläutert, die sich auf seine Kernkomponenten konzentriert: Container, Iteratoren, Algorithmen und Funktoren. Es wird beschrieben, wie diese interagieren, um die generische Programmierung, die Verbesserung der Codeeffizienz und die Lesbarkeit t zu ermöglichen

Dieser Artikel beschreibt die effiziente Verwendung von STL -Algorithmus in c. Es betont die Auswahl der Datenstruktur (Vektoren vs. Listen), Algorithmus -Komplexitätsanalyse (z. B. std :: sortieren vs. std :: partial_sort), Iteratoranwendungen und parallele Ausführung. Häufige Fallstricke wie

Artikel erörtert den effektiven Einsatz von RValue -Referenzen in C für Bewegungssemantik, perfekte Weiterleitung und Ressourcenmanagement, wobei Best Practices und Leistungsverbesserungen hervorgehoben werden. (159 Charaktere)

In diesem Artikel wird die effektive Ausnahmebehandlung in C, Covering Try, Catch und Wurp Mechanics, beschrieben. Es betont Best Practices wie Raii, die Vermeidung unnötiger Fangblöcke und die Protokollierung von Ausnahmen für robusten Code. Der Artikel befasst sich auch mit Perf

C 20 -Bereiche verbessern die Datenmanipulation mit Ausdruckskraft, Komposition und Effizienz. Sie vereinfachen komplexe Transformationen und integrieren sich in vorhandene Codebasen, um eine bessere Leistung und Wartbarkeit zu erhalten.

In dem Artikel wird die Verwendung von Move Semantics in C erörtert, um die Leistung zu verbessern, indem unnötiges Kopieren vermieden wird. Es umfasst die Implementierung von Bewegungskonstruktoren und Zuordnungsbetreibern unter Verwendung von STD :: MOVE

In dem Artikel wird der dynamische Versand in C, seine Leistungskosten und Optimierungsstrategien erörtert. Es unterstreicht Szenarien, in denen der dynamische Versand die Leistung beeinflusst, und vergleicht sie mit statischer Versand, wobei die Kompromisse zwischen Leistung und Betonung betont werden
