


Bitweises UND von Zahlen, die mindestens ein nicht leeres Subarray enthalten, geschrieben in C++
Um ein Problem mit einem gegebenen Array zu lösen, müssen wir alle möglichen ganzen Zahlen finden, die mindestens das bitweise UND eines nichtleeren Unterarrays sind, zum Beispiel -
Input : nums[ ] = { 3, 5, 1, 2, 8 } Output : { 2, 5, 0, 3, 8, 1 } Explanation: 2 is the bitwise AND of subarray {2}, 5 is the bitwise AND of subarray {5}, 0 is the bitwise AND of subarray {1, 2}, {2, 8} and {1, 2, 8}, 3 is the bitwise AND of subarray {3}, 8 is the bitwise AND of subarray {8}, 1 is the bitwise AND of subarray {1}, {3, 5} and {3, 5, 1}. Input : nums[ ] = { 2, 6, 3, 8, 1 } Output: { 1, 8, 3, 6, 2, 0 }
Methoden zur Lösungsfindung
können angewendet werden Die einfache Methode besteht darin,
alle möglichen nicht leeren Subarrays zu finden.
Berechnen Sie beim Durchlaufen eines Arrays das bitweise UND jedes Elements im Subarray.
-
Um doppelte Werte zu vermeiden, speichern Sie alle Ergebnisse in einer Sammlung.
Beispiel
#include <bits/stdc++.h> using namespace std; int main(){ int arr[] ={ 2, 6, 3, 8, 1 }; int n = sizeof(arr) / sizeof(arr[0]); // Declaring set to store result of each AND operation. unordered_set<int> result; int val; // nested loops to traverse through all the possible non empty subarrays. for (int i = 0; i < n; ++i){ for (int j = i, val = INT_MAX; j < n; ++j){ val = val & arr[j]; // storing result of AND operation result.insert(val); } } cout << "All possible numbers are: "; // printing all the values of set. for (auto i = result.begin(); i != result.end();i++) cout << *i << " "; return 0; }
Ausgabe
All possible numbers are: 1 8 3 6 0 2
Die obige Codebeschreibung
deklariert, dass alle Ergebnisse der UND-Operation gespeichert werden sollen.
Initialisieren Sie die Variable „val“ mit INT_MAX, da wir für die UND-Verknüpfung alle Bits auf 1 setzen müssen.
Die innere Schleife durchläuft alle möglichen Unterarrays im i-ten Index.
Verknüpft jedes Element miteinander und mit sich selbst und speichert es im Ergebnissatz.
Alles drucken
Fazit
In diesem Tutorial haben wir eine einfache Möglichkeit zur Lösung dieses Problems besprochen, nämlich die UND-Operation für jedes mögliche Unterarray zu berechnen. Wir haben auch C++-Programme zur Lösung dieses Problems besprochen. Sie können diesen Code auch in jeder anderen Sprache wie Java, C, Python usw. schreiben. Wir hoffen, dass Sie dieses Tutorial hilfreich fanden.
Das obige ist der detaillierte Inhalt vonBitweises UND von Zahlen, die mindestens ein nicht leeres Subarray enthalten, geschrieben in C++. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Wir alle kennen Zahlen, die nicht das Quadrat einer Zahl sind, wie zum Beispiel 2, 3, 5, 7, 8 usw. Es gibt N nichtquadratische Zahlen und es ist unmöglich, jede Zahl zu kennen. In diesem Artikel erklären wir alles über quadratlose oder nichtquadratische Zahlen und Möglichkeiten, die N-te nichtquadratische Zahl in C++ zu finden. N-te nichtquadratische Zahl Wenn eine Zahl das Quadrat einer ganzen Zahl ist, wird die Zahl als perfektes Quadrat bezeichnet. Einige Beispiele für perfekte Quadratzahlen sind -1isquadratvon14isquadratvon29isquadratvon316isquadratvon425isquadratvon5. Wenn eine Zahl nicht das Quadrat einer ganzen Zahl ist, wird die Zahl als nichtquadratisch bezeichnet. Die ersten 15 nichtquadratischen Zahlen sind beispielsweise -2,3,5,6,

Ein Kreis ist eine geschlossene Figur. Alle Punkte auf einem Kreis haben den gleichen Abstand von einem Punkt innerhalb des Kreises. Der Mittelpunkt wird Kreismittelpunkt genannt. Der Abstand von einem Punkt zum Mittelpunkt eines Kreises wird Radius genannt. Die Fläche ist eine quantitative Darstellung der Dimensionsspanne einer geschlossenen Figur. Die Fläche eines Kreises ist die Fläche, die innerhalb der Abmessungen des Kreises eingeschlossen ist. Die Formel zur Berechnung der Fläche eines Kreises lautet Fläche=π*r*r. Um die Fläche zu berechnen, geben wir den Radius des Kreises als Eingabe ein. Wir verwenden die Formel zur Berechnung der Fläche, Algorithmus SCHRITT 1: Übernehmen Sie den Radius als Eingabe vom Benutzer mit stdin. SCHRITT 2 : Berechnen Sie die Fläche des Kreises mit Fläche=(

In diesem Artikel lernen wir den Umkehralgorithmus kennen, um das gegebene Array um k Elemente nach rechts zu drehen, zum Beispiel −Input:arr[]={4,6,2,6,43,7,3,7}, k= 4Ausgabe:{43,7,3,7,4,6,2,6}Erklärung:Das Drehen jedes Elements des Arrays um 4 Elemente nach rechts ergibt {43,7,3,7,4,6,2,6}.Eingabe:arr[]= {8 ,5,8,2,1,4,9,3},k=3Ausgabe:{4,9,3,8,5,8,2,1} Finden Sie die Lösung

Wir benötigen entsprechende Kenntnisse, um mehrere eindeutige Paare in der Array-Syntax von C++ zu erstellen. Während wir die Anzahl der eindeutigen Paare ermitteln, zählen wir alle eindeutigen Paare im angegebenen Array, d. h. alle möglichen Paare können gebildet werden, wobei jedes Paar eindeutig sein sollte. Zum Beispiel -Input:array[]={5,5,9}Output:4Erläuterung:Die Anzahl dereinzigartigen Paaresind(5,5),(5,9),(9,5)und(9,9).Input:array[] = {5,4,3,2,2}Ausgabe: 16 Möglichkeiten, eine Lösung zu finden Es gibt zwei Möglichkeiten, dieses Problem zu lösen: −

In diesem Artikel werden wir C++ verwenden, um das Problem zu lösen, die Anzahl der Subarrays zu ermitteln, deren Maximal- und Minimalwert gleich sind. Das Folgende ist ein Beispiel für das Problem: −Input:array={2,3,6,6,2,4,4,4}Output:12Explanation:{2},{3},{6},{6}, {2 },{4},{4},{4},{6,6},{4,4},{4,4}und {4,4,4}sind die Teilarrays, die mit dem gleichen maximalen und minimalen Element gebildet werden können. Eingabe: array={3, 3, 1,5,

In diesem Artikel erklären wir Möglichkeiten, reflexive Beziehungen auf einer Menge zu finden. In diesem Problem erhalten wir eine Zahl n und eine Menge von n natürlichen Zahlen und müssen die Anzahl der reflexiven Beziehungen bestimmen. Reflexive Relation – Eine Relation R heißt eine reflexive Relation auf der Menge A, wenn für jedes „a“ in der Menge A (a, a) zur Relation R gehört. Zum Beispiel -Input:x=1Output:1Explanation:set={1},reflexiverelationsonA*A:{{1}}Input:x=2Output:4Explanation:set={1,2},reflexiverelationsonA*

In diesem Problem erhalten wir einen Zeiger auf den Kopf der verknüpften Liste und eine ganze Zahl k. In einer Gruppe der Größe k müssen wir die verknüpfte Liste umkehren. Zum Beispiel -Input:1<->2<->3<->4<->5(doublylinkedlist),k=3Output:3<->2<->1<->5<->4 sucht nach Lösungen Methode In diesem Problem werden wir einen rekursiven Algorithmus formulieren, um dieses Problem zu lösen. Bei dieser Methode verwenden wir die Rekursion und lösen das Problem mithilfe der Rekursion. Beispiel#include<iostream&

In dem gegebenen Problem haben wir ein Array und müssen das Array mit einem Inversionsalgorithmus wie −Input:arr[]=[1,2,3,4,5,6,7], d=2Output um d Elemente drehen: arr[]=[3,4,5,6,7,1,2]Erklärung: Wie Sie sehen können, müssen wir dieses Array um d=2 drehen, aber unsere Hauptaufgabe besteht darin, dies mithilfe einer Umkehrtechnik zu erreichen, und sind zu dem Schluss gekommen: Zuerst kehren wir um
