Analyse der besten Jobtrends in der Python-Programmierung
Analyse der besten Beschäftigungstrends im Bereich der Python-Programmierung
Einleitung:
In den letzten Jahren hat die Popularität der Programmiersprache Python dramatisch zugenommen, und ihre Anwendungsfälle in verschiedenen Bereichen haben nach und nach zugenommen. Im digitalen Zeitalter sind Python-Programmierkenntnisse zu einem der Schlüsselelemente für die Suche nach idealen Beschäftigungsmöglichkeiten geworden. In diesem Artikel werden die wichtigsten Jobtrends in der Python-Programmierung untersucht und relevante Codebeispiele bereitgestellt. Egal, ob Sie Anfänger oder erfahrener Entwickler sind, Sie können daraus wertvolle Informationen erhalten.
- Data Science und maschinelles Lernen
Data Science und maschinelles Lernen ist einer der Bereiche mit den größten Karrieremöglichkeiten in der Python-Programmierung. Python verfügt über umfangreiche Datenverarbeitungs- und wissenschaftliche Rechenbibliotheken wie NumPy, Pandas und SciPy usw. sowie leistungsstarke Bibliotheken für maschinelles Lernen wie Scikit-learn und TensorFlow. Hier ist ein einfaches Beispiel, das zeigt, wie Python für die Datenverarbeitung und maschinelles Lernen verwendet wird:
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression # 读取数据集 data = pd.read_csv('data.csv') # 数据预处理 X = data[['feature1', 'feature2', 'feature3']] y = data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 模型训练和预测 model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) # 模型评估 score = model.score(X_test, y_test)
Der obige Code zeigt, wie man Daten mithilfe der Pandas-Bibliothek von Python liest und verarbeitet und sie mithilfe eines linearen Regressionsmodells aus der Scikit-learn-Bibliothek trainiert und Vorhersagen und bewerten Sie die Modellleistung mithilfe von Modellbewertungsmetriken.
- Web Crawler und Datenanalyse
Mit der rasanten Entwicklung des Internets ist die Beschaffung von Daten aus dem Internet für viele Unternehmen und Organisationen zu einer wichtigen Aufgabe geworden. Die prägnante Syntax und die umfangreichen Crawler-Bibliotheken (wie Requests und BeautifulSoup) von Python machen es zur bevorzugten Sprache zum Crawlen von Webdaten. Das Folgende ist ein einfaches Beispiel, das zeigt, wie Python zum Web-Crawling und zur Datenanalyse verwendet wird:
import requests from bs4 import BeautifulSoup import pandas as pd # 发送HTTP请求获取网页内容 response = requests.get('https://example.com') html = response.text # 使用BeautifulSoup解析网页 soup = BeautifulSoup(html, 'html.parser') # 提取所需数据 data = [] for item in soup.find_all('div', class_='item'): title = item.find('h2').text price = item.find('span', class_='price').text data.append({'title': title, 'price': price}) # 将数据转换为DataFrame对象 df = pd.DataFrame(data) # 数据分析和可视化 mean_price = df['price'].mean() max_price = df['price'].max()
Der obige Code zeigt, wie die Requests-Bibliothek von Python zum Senden von HTTP-Anfragen zum Abrufen von Webseiteninhalten verwendet wird und wie die BeautifulSoup-Bibliothek zum Parsen verwendet wird HTML-Inhalt. Extrahieren Sie dann die erforderlichen Daten aus der analysierten Webseite und konvertieren Sie die Daten mithilfe der Pandas-Bibliothek in ein DataFrame-Objekt. Abschließend können die Daten analysiert und visualisiert werden.
- Webentwicklung und -automatisierung
Mit der Popularität des Internets ist auch die Nachfrage nach Talenten mit Fähigkeiten in der Website-Entwicklung und -Automatisierung stark gestiegen. Die Web-Frameworks von Python wie Flask und Django erleichtern die Entwicklung leistungsstarker und leicht zu wartender Websites. Hier ist ein einfaches Beispiel, das zeigt, wie Flask für die einfache Website-Entwicklung verwendet wird:
from flask import Flask, render_template app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/about') def about(): return render_template('about.html') if __name__ == '__main__': app.run(debug=True)
Der obige Code zeigt, wie man die Flask-Bibliothek verwendet, um eine einfache Website zu erstellen und verschiedene HTML-Vorlagen auf verschiedenen Routen zu rendern. Durch Ausführen des Codes können Sie eine Website lokal starten und verschiedene Seiten anzeigen, indem Sie die entsprechenden URLs besuchen.
Zusammenfassung:
Die Beschäftigungsaussichten im Bereich Python-Programmierung sind sehr breit gefächert. In diesem Artikel werden Beispiele aus den Bereichen Datenwissenschaft und maschinelles Lernen, Web Scraping und Datenanalyse sowie Webentwicklung und -automatisierung vorgestellt. Diese Beispiele sind nur die Spitze des Eisbergs der Python-Anwendungen in verschiedenen Bereichen. Egal, ob Sie Anfänger oder erfahrener Entwickler sind, es besteht eine Chance, dass Sie Ihren idealen Job als Python-Programmierer finden. Solange Sie weiter lernen und Ihre Fähigkeiten verbessern, können Sie mit den neuesten Trends in der Python-Programmierung Schritt halten und in dieser Branche voller Möglichkeiten erfolgreich sein.
Das obige ist der detaillierte Inhalt vonAnalyse der besten Jobtrends in der Python-Programmierung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Python ist eine weit verbreitete Programmiersprache und seine leistungsstarken Datenanalyse- und Visualisierungsfunktionen machen es zu einem der bevorzugten Werkzeuge für Datenwissenschaftler und Ingenieure für maschinelles Lernen. In diesen Anwendungen ist die Residuenanalyse eine gängige Technik zur Bewertung der Modellgenauigkeit und zur Identifizierung etwaiger Modellverzerrungen. In diesem Artikel stellen wir verschiedene Möglichkeiten zur Verwendung von Restanalysetechniken in Python vor. Residuen verstehen Bevor wir Techniken zur Residuenanalyse in Python einführen, wollen wir zunächst verstehen, was Residuen sind. In der Statistik ist das Residuum die Differenz zwischen dem tatsächlich beobachteten Wert und

Behauptungen in Python sind ein nützliches Werkzeug für Programmierer zum Debuggen ihres Codes. Es wird verwendet, um zu überprüfen, ob der interne Status des Programms den Erwartungen entspricht, und um einen Assertionsfehler (AssertionError) auszulösen, wenn diese Bedingungen falsch sind. Während des Entwicklungsprozesses werden beim Testen und Debuggen Assertionen verwendet, um zu überprüfen, ob der Status des Codes mit den erwarteten Ergebnissen übereinstimmt. In diesem Artikel werden die Ursachen, Lösungen und die korrekte Verwendung von Zusicherungen in Ihrem Code erläutert. Ursache des Assertion-Fehlers. Assertion-Fehler bestanden

Die geschichtete Stichprobentechnik in Python ist eine häufig verwendete Datenerfassungsmethode in der Statistik. Sie kann einen Teil der Stichproben aus dem Datensatz zur Analyse auswählen, um auf die Eigenschaften des gesamten Datensatzes zu schließen. Im Zeitalter von Big Data sind die Datenmengen riesig und die Verwendung der gesamten Stichprobe für die Analyse ist sowohl zeitaufwändig als auch wirtschaftlich unpraktisch. Daher kann die Wahl einer geeigneten Stichprobenmethode die Effizienz der Datenanalyse verbessern. In diesem Artikel werden hauptsächlich geschichtete Stichprobentechniken in Python vorgestellt. Was ist eine geschichtete Stichprobe? Bei der Probenahme handelt es sich um eine geschichtete Probenahme

Überblick über die Entwicklung eines Schwachstellenscanners mit Python In der heutigen Umgebung zunehmender Sicherheitsbedrohungen im Internet sind Schwachstellenscanner zu einem wichtigen Werkzeug zum Schutz der Netzwerksicherheit geworden. Python ist eine beliebte Programmiersprache, die prägnant, leicht lesbar und leistungsstark ist und sich für die Entwicklung verschiedener praktischer Tools eignet. In diesem Artikel erfahren Sie, wie Sie mit Python einen Schwachstellenscanner entwickeln, der Ihr Netzwerk in Echtzeit schützt. Schritt 1: Scanziele festlegen Bevor Sie einen Schwachstellenscanner entwickeln, müssen Sie festlegen, welche Ziele Sie scannen möchten. Dies kann Ihr eigenes Netzwerk sein oder alles, was Sie testen dürfen

So verwenden Sie Python zum Schreiben und Ausführen von Skripten unter Linux. Im Linux-Betriebssystem können wir Python zum Schreiben und Ausführen verschiedener Skripte verwenden. Python ist eine prägnante und leistungsstarke Programmiersprache, die eine Fülle von Bibliotheken und Tools bereitstellt, um die Skripterstellung einfacher und effizienter zu machen. Im Folgenden stellen wir die grundlegenden Schritte zur Verwendung von Python zum Schreiben und Ausführen von Skripten unter Linux vor und stellen einige spezifische Codebeispiele bereit, die Ihnen helfen, es besser zu verstehen und zu verwenden. Installieren Sie Python

Support Vector Clustering (SVC) ist ein unbeaufsichtigter Lernalgorithmus, der auf Support Vector Machine (SVM) basiert und Clustering in unbeschrifteten Datensätzen erreichen kann. Python ist eine beliebte Programmiersprache mit einem umfangreichen Satz an Bibliotheken und Toolkits für maschinelles Lernen. In diesem Artikel wird die Verwendung der Support-Vektor-Clustering-Technologie in Python vorgestellt. 1. Prinzip des Support Vector Clustering SVC basiert auf einer Reihe von Support Vektoren

Verwendung und Codebeispiele der Funktion sqrt() in Python 1. Funktion und Einführung der Funktion sqrt() In der Python-Programmierung ist die Funktion sqrt() eine Funktion im Mathematikmodul und ihre Funktion besteht darin, die Quadratwurzel von zu berechnen eine Zahl. Die Quadratwurzel bedeutet, dass eine mit sich selbst multiplizierte Zahl dem Quadrat der Zahl entspricht, d. h. x*x=n, dann ist x die Quadratwurzel von n. Zur Berechnung der Quadratwurzel kann im Programm die Funktion sqrt() verwendet werden. 2. So verwenden Sie die Funktion sqrt() in Python, sq

Python-Programmierpraxis: Verwendung der Baidu Map API zum Generieren statischer Kartenfunktionen Einführung: In der modernen Gesellschaft sind Karten zu einem unverzichtbaren Bestandteil des Lebens der Menschen geworden. Bei der Arbeit mit Karten benötigen wir häufig eine statische Karte eines bestimmten Bereichs zur Anzeige auf einer Webseite, einer mobilen App oder einem Bericht. In diesem Artikel wird die Verwendung der Programmiersprache Python und der Baidu Map API zum Generieren statischer Karten vorgestellt und relevante Codebeispiele bereitgestellt. 1. Vorbereitungsarbeiten Um die Funktion der Generierung statischer Karten mithilfe der Baidu Map API zu realisieren, I
