


Konstruieren Sie aus dem Array gemäß den angegebenen Bedingungen eine binäre Zeichenfolge der Länge K
In diesem Tutorial müssen wir eine Binärzeichenfolge der Länge K so konstruieren, dass sie an ihrem i-ten Index „1“ enthalten sollte, wenn die Summe der Teilmengen gleich I mithilfe von Array-Elementen erreicht werden kann. Wir lernen zwei Möglichkeiten kennen, das Problem zu lösen. Im ersten Ansatz werden wir dynamische Programmiermethoden verwenden, um zu prüfen, ob es möglich ist, dass die Summe der Teilmengen gleich dem Index „I“ ist. Bei der zweiten Methode verwenden wir Bitset, um alle möglichen Summen über Array-Elemente zu finden.
Problemstellung – Wir erhalten ein Array mit N ganzen Zahlen. Zusätzlich erhalten wir eine Ganzzahl M, die die Länge der Binärzeichenfolge darstellt. Wir müssen eine Binärzeichenfolge der Länge M erstellen, die die folgenden Bedingungen erfüllt.
Das Zeichen am Index „I“ ist 1, wenn wir eine Teilmenge aus dem Array finden können, deren Summe gleich dem Index „I“ ist, andernfalls ist es 0.
Mein Index beginnt bei 1.
Beispiel Beispiel
Input – arr = [1, 2] M = 4
Output – 1110
Anleitung
Die Teilmenge, deren Summe 1 ist, ist {1}.
Die Teilmenge, deren Summe 2 ist, ist {2}.
Die Teilmenge, deren Summe 3 ist, ist {1, 2}.
Wir können keine Teilmenge finden, deren Summe 4 beträgt, also setzen wir 0 in den 4. Index.
Input – arr = [1, 3, 1] M = 9
Output – 111110000
Anleitung
Wir können alle möglichen Kombinationen erstellen, sodass die Summe zwischen 1 und 5 liegt. Die ersten 5 Zeichen sind also 1 und die letzten 4 Zeichen sind 0.
Input – arr = [2, 6, 3] M = 6
Output – 011011
Anleitung
Mit Array-Elementen können Sie keine Summe von 1 und 4 erhalten, daher platzieren wir 0 an der ersten und vierten Indexposition.
Methode 1
In dieser Methode verwenden wir dynamische Programmierung, um zu prüfen, ob wir mithilfe von Array-Elementen eine Summe bilden können, die dem Index „I“ entspricht. Wir werden es für jeden Index überprüfen und 1 oder 0 an eine Binärzeichenfolge anhängen.
Algorithmus
Schritt 1 – Erstellen Sie einen Vektor der Größe N und initialisieren Sie ihn mit einem ganzzahligen Wert. Definieren Sie außerdem eine „bin“-Variable vom Typ string und initialisieren Sie sie mit einer leeren Zeichenfolge.
Schritt 2 – Verwenden Sie eine for-Schleife, um die Gesamtzahl der Iterationen gleich der Stringlänge zu machen.
Schritt 3 – Rufen Sie in der for-Schleife die Funktion isSubsetSum() auf, indem Sie das Array N und den Indexwert als Parameter übergeben.
Schritt 4 – Wenn die Funktion isSubsetSum() „true“ zurückgibt, hängen Sie „1“ an „bin“ an. Andernfalls hängen Sie „0“ an „bin“ an.
Schritt 5 – Definieren Sie die Funktion isSubsetSum(), um zu prüfen, ob die Summierung mithilfe von Array-Elementen erfolgen kann.
Schritt 5.1 – Definieren Sie einen zweidimensionalen Vektor mit dem Namen dpTable.
Schritt 5.2 – Initialisieren Sie „dpTable[i][0]“ auf „true“, da eine Nullsumme immer möglich ist. Hier ist „I“ der Indexwert.
Schritt 5.3 – Initialisieren Sie „dpTable[0][j]“ auf „false“, da die Summe leerer Arrays nicht möglich ist.
Schritt 5.4 – Verwenden Sie nun zwei verschachtelte Schleifen. Die erste Schleife iteriert von 1 bis N und die andere Schleife iteriert von 1 bis Summe.
Schritt 5.5 – Wenn in der for-Schleife der Wert des aktuellen Elements größer als die Summe ist, ignorieren Sie es.
Schritt 5.6 − Andernfalls schließen Sie Elemente ein oder aus, um die Summe zu erhalten.
Schritt 5.7 − Geben Sie „dpTable[N][sum]“ mit den Ergebnissen zurück.
Beispiel
#include <iostream> #include <vector> using namespace std; // Function to check if subset-sum is possible bool isSubsetSum(vector<int> &arr, int N, int sum){ vector<vector<bool>> dpTable(N + 1, vector<bool>(sum + 1, false)); // Base cases for (int i = 0; i <= N; i++) // If the sum is zero, then the answer is true dpTable[i][0] = true; // for an empty array, the sum is not possible for (int j = 1; j <= sum; j++) dpTable[0][j] = false; // Fill the dp table for (int i = 1; i <= N; i++){ for (int j = 1; j <= sum; j++){ // if the current element is greater than the sum, then we can't include it if (arr[i - 1] > j) dpTable[i][j] = dpTable[i - 1][j]; // else we can either include it or exclude it to get the sum else dpTable[i][j] = dpTable[i - 1][j] || dpTable[i - 1][j - arr[i - 1]]; } } // The last cell of the dp table contains the result return dpTable[N][sum]; } int main(){ // Given M int M = 9; // Creating the vector vector<int> arr = {1, 3, 1}; // getting the size of the vector int N = arr.size(); // Initializing the string string bin = ""; // Making k iteration to construct the string of length k for (int i = 1; i <= M; i++){ // if the subset sum is possible, then add 1 to the string, else add 0 if (isSubsetSum(arr, N, i)){ bin += "1"; } else{ bin += "0"; } } // print the result. cout << "The constructed binary string of length " << M << " according to the given conditions is "; cout << bin; return 0; }
Ausgabe
The constructed binary string of length 9 according to the given conditions is 111110000
Zeitkomplexität – O(N^3), da die Zeitkomplexität von isSubsetSum() O(N^2) beträgt und wir sie im Treibercode N-mal aufrufen.
Raumkomplexität – O(N^2), da wir in der Funktion isSubsetSum() einen zweidimensionalen Vektor verwenden.
So verwenden Sie Bitset
Bei dieser Methode verwenden wir Bitsätze, um alle möglichen Summenwerte zu finden, indem wir verschiedene Elemente des Arrays kombinieren. Bitset bedeutet hier, dass eine Binärzeichenfolge erstellt wird. Im resultierenden Bitsatz repräsentiert jedes Bit davon, ob die Summe wahrscheinlich einem bestimmten Index entspricht, und wir müssen ihn hier finden.
Algorithmus
Schritt 1 – Definieren Sie das Array und M. Definieren Sie außerdem die Funktion createBinaryString().
Schritt 2 – Als nächstes definieren Sie den Satz von Bits mit der gewünschten Länge, wodurch eine Binärzeichenfolge erstellt wird.
Schritt 3 – Bit[0] auf 1 initialisieren, da eine Summe von 0 immer möglich ist.
Schritt 4 – Verwenden Sie eine for-Schleife, um die Array-Elemente zu durchlaufen
.
Schritt 5 – Führen Sie zunächst eine „Bit“-Linksverschiebung an den Array-Elementen durch. Der resultierende Wert wird dann mit dem Bitwert ODER-verknüpft.
Schritt 6 − Drucken Sie den Wert des Bitsatzes von Index 1 bis M.
Beispiel
#include <bits/stdc++.h> using namespace std; // function to construct the binary string void createBinaryString(int array[], int N, int M){ bitset<100003> bit; // Initialize with 1 bit[0] = 1; // iterate over all the integers for (int i = 0; i < N; i++){ // perform left shift by array[i], and OR with the previous value. bit = bit | bit << array[i]; } // Print the binary string cout << "The constructed binary string of length " << M << " according to the given conditions is "; for (int i = 1; i <= M; i++){ cout << bit[i]; } } int main(){ // array of integers int array[] = {1, 4, 2}; int N = sizeof(array) / sizeof(array[0]); // value of M, size of the string int M = 8; createBinaryString(array, N, M); }
Ausgabe
The constructed binary string of length 8 according to the given conditions is 11111110
Zeitkomplexität – O(N), weil wir eine einzelne for-Schleife verwenden.
Raumkomplexität – O(N), weil wir den Wert des Bitsatzes speichern.
Fazit
Hier haben wir die zweite Methode optimiert, die hinsichtlich der räumlichen und zeitlichen Komplexität besser ist als die erste Methode. Allerdings kann die zweite Methode für Anfänger schwierig zu verstehen sein, wenn Sie keine Ahnung von Bitsätzen haben.
Das obige ist der detaillierte Inhalt vonKonstruieren Sie aus dem Array gemäß den angegebenen Bedingungen eine binäre Zeichenfolge der Länge K. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die Methode zur Verwendung einer foreach-Schleife zum Entfernen doppelter Elemente aus einem PHP-Array ist wie folgt: Durchlaufen Sie das Array und löschen Sie es, wenn das Element bereits vorhanden ist und die aktuelle Position nicht das erste Vorkommen ist. Wenn beispielsweise in den Datenbankabfrageergebnissen doppelte Datensätze vorhanden sind, können Sie diese Methode verwenden, um diese zu entfernen und Ergebnisse ohne doppelte Datensätze zu erhalten.

Zu den Methoden zum tiefen Kopieren von Arrays in PHP gehören: JSON-Kodierung und -Dekodierung mit json_decode und json_encode. Verwenden Sie array_map und clone, um tiefe Kopien von Schlüsseln und Werten zu erstellen. Verwenden Sie Serialize und Deserialize für die Serialisierung und Deserialisierung.

Der Leistungsvergleich der PHP-Methoden zum Umdrehen von Array-Schlüsselwerten zeigt, dass die Funktion array_flip() in großen Arrays (mehr als 1 Million Elemente) eine bessere Leistung als die for-Schleife erbringt und weniger Zeit benötigt. Die for-Schleifenmethode zum manuellen Umdrehen von Schlüsselwerten dauert relativ lange.

Die PHP-Funktion array_group_by kann Elemente in einem Array basierend auf Schlüsseln oder Abschlussfunktionen gruppieren und ein assoziatives Array zurückgeben, wobei der Schlüssel der Gruppenname und der Wert ein Array von Elementen ist, die zur Gruppe gehören.

Die beste Vorgehensweise zum Durchführen einer Array-Deep-Kopie in PHP besteht darin, json_decode(json_encode($arr)) zu verwenden, um das Array in einen JSON-String zu konvertieren und ihn dann wieder in ein Array umzuwandeln. Verwenden Sie unserialize(serialize($arr)), um das Array in eine Zeichenfolge zu serialisieren und es dann in ein neues Array zu deserialisieren. Verwenden Sie den RecursiveIteratorIterator, um mehrdimensionale Arrays rekursiv zu durchlaufen.

Die mehrdimensionale Array-Sortierung kann in Einzelspaltensortierung und verschachtelte Sortierung unterteilt werden. Bei der Einzelspaltensortierung kann die Funktion array_multisort() zum Sortieren nach Spalten verwendet werden. Bei der verschachtelten Sortierung ist eine rekursive Funktion erforderlich, um das Array zu durchlaufen und zu sortieren. Zu den praktischen Beispielen gehören die Sortierung nach Produktname und die Sortierung von Verbindungen nach Verkaufsmenge und Preis.

Der PHP-Algorithmus zum Zusammenführen und Deduplizieren von Arrays bietet eine parallele Lösung, indem er das ursprüngliche Array zur parallelen Verarbeitung in kleine Blöcke aufteilt und der Hauptprozess die Ergebnisse der zu deduplizierenden Blöcke zusammenführt. Algorithmusschritte: Teilen Sie das ursprüngliche Array in gleichmäßig verteilte kleine Blöcke auf. Verarbeiten Sie jeden Block zur Deduplizierung parallel. Blockergebnisse zusammenführen und erneut deduplizieren.

Mit der Funktion array_group() von PHP kann ein Array nach einem angegebenen Schlüssel gruppiert werden, um doppelte Elemente zu finden. Diese Funktion durchläuft die folgenden Schritte: Verwenden Sie key_callback, um den Gruppierungsschlüssel anzugeben. Verwenden Sie optional value_callback, um Gruppierungswerte zu bestimmen. Zählen Sie gruppierte Elemente und identifizieren Sie Duplikate. Daher ist die Funktion array_group() sehr nützlich, um doppelte Elemente zu finden und zu verarbeiten.
