


Finden Sie in einem gerichteten gewichteten Graphen den kürzesten Pfad, der genau k Kanten enthält.
In einem koordinierten gewichteten Diagramm besteht das Problem, den kürzesten Pfad mit genau k Kanten zu finden, darin, den Pfad mit dem geringsten Gewicht zu bestimmen und dabei genau k Kanten zu navigieren. Dies wird durch den Einsatz dynamischer Programmierstrategien erreicht, beispielsweise durch den Einsatz von 3D-Frameworks, um minimale Gewichte auf alle erdenklichen Arten zu speichern. Die Berechnung wird an Eckpunkten und Kanten wiederholt, wobei das Mindestgewicht bei jedem Schritt angepasst wird. Durch die Berücksichtigung aller möglichen Möglichkeiten, genau k Kanten zu haben, kann die Berechnung die eingeschränkteste Art unterscheiden, k Kanten im Diagramm zu haben.
Anwendungsmethode
Naive rekursive Methode
Dijkstra-Algorithmus mit Kantenbeschränkungen
Naive rekursive Methode
Naive rekursive Methoden können eine wichtige und klare Strategie zur Problemlösung sein, die darin besteht, komplexe Probleme in kleinere Teilprobleme zu zerlegen und diese rekursiv zu lösen. Bei diesem Ansatz ruft sich die Arbeit mehrmals auf, um Teilprobleme zu untersuchen, bis der Basisfall erreicht ist. Dennoch kann es bei größeren Problemen aufgrund der Doppelzählung und der Abdeckung von Teilproblemen verschwenderisch sein. Es erfordert Optimierungsmethoden wie Speicher- oder Energieprogrammierung. Leichtgläubige rekursive Methoden sind leicht zu beschaffen und zu implementieren, können jedoch unter einer exponentiellen Zeitkomplexität leiden. Es wird häufig zur Lösung kleinerer Probleme oder als Ausgangspunkt für optimalere Berechnungen verwendet.
Algorithmus
Stellt den funktionierenden kürzesten Pfad (Graph, u, v, k) dar, der als Eingabe einen Graphen, einen Quellscheitelpunkt u, einen Zielscheitelpunkt v und die Anzahl der Kanten k verwendet.
Überprüfen Sie die Grundsituation:
a. Gibt zurück, wenn k und u mit v brechen (da in diesem Fall keine Kanten zulässig sind).
Der Zweite. Wenn k 1 ist und es im Diagramm eine Kante zwischen u und v gibt, wird dessen Gewicht zurückgegeben.
c. Wenn k kleiner oder gleich 0 ist, wird unbegrenzt zurückgegeben (da negative oder Nullkanten nicht zulässig sind).
Initialisieren Sie eine unendliche Variable res, um die kürzeste Pfadentfernung zu speichern.
Der Graph sollte über alle Eckpunkte wie folgt iterieren:
a. Wenn u und i nicht zu u oder v aufsteigen, dann gibt es einen Rand von u zu i:
Rufen Sie shortestPath rekursiv auf, wobei i der moderne Quellscheitelpunkt, v der Zielscheitelpunkt und k−1 die Anzahl der verbleibenden Kanten ist.
Wenn das zurückgegebene Ergebnis nicht unendlich ist, wird res auf den Mindestwert von res und das Gewicht der aktuellen Kante und des rekursiven Ergebnisses aktualisiert.
Gibt den Wert von res als die eingeschränkteste Möglichkeit zur genauen Trennung von k Kanten zurück.
Beispiel
#include <iostream> #include <climits> #define V 4 #define INF INT_MAX int shortestPathWithKEdges(int graph[][V], int source, int destination, int k) { // Base cases if (k == 0 && source == destination) return 0; if (k == 1 && graph[source][destination] != INF) return graph[source][destination]; if (k <= 0) return INF; // Initialize result int shortestPathDistance = INF; // Explore all adjacent vertices of the source vertex for (int i = 0; i < V; i++) { if (graph[source][i] != INF && source != i && destination != i) { int recursiveDistance = shortestPathWithKEdges(graph, i, destination, k - 1); if (recursiveDistance != INF) shortestPathDistance = std::min(shortestPathDistance, graph[source][i] + recursiveDistance); } } return shortestPathDistance; } int main() { int graph[V][V] = { {0, 10, 3, 2}, {INF, 0, INF, 7}, {INF, INF, 0, 6}, {INF, INF, INF, 0} }; int source = 0, destination = 3, k = 2; std::cout << "Weight of the shortest path is " << shortestPathWithKEdges(graph, source, destination, k) << std::endl; return 0; }
Ausgabe
Weight of the shortest path is 9
Dijkstra-Algorithmus mit Kantenbeschränkungen
Dijkstras Algorithmus mit Kantenbeschränkungen ist eine Graph-Traversal-Berechnung, die den kürzesten Weg zwischen einem Quellscheitelpunkt und allen anderen Scheitelpunkten im Diagramm identifiziert. Es berücksichtigt Grenzen oder Einschränkungen an den Kanten des Diagramms, wie z. B. die höchsten oder niedrigsten Kantengewichte. Die Berechnung behält die erforderlichen Scheitelpunktlinien bei und wählt iterativ die wenigsten zu entfernenden Scheitelpunkte aus. Wenn an diesem Punkt ein kürzerer Pfad gefunden wird, werden benachbarte Scheitelpunkte entspannt, indem der Abstand zwischen ihnen vergrößert wird. Diese Vorbereitung wird fortgesetzt, bis alle Eckpunkte besucht wurden. Der Dijkstra-Algorithmus mit Kantenbefehlen garantiert, dass der gewählte Weg die erforderlichen Kantenbeschränkungen erfüllt und gleichzeitig den am stärksten eingeschränkten Weg findet
Algorithmus
Verwenden Sie die folgenden Parameter, um Dijkstras Kunstwerk zu erstellen
Grafik: Eingabediagramm mit Eckpunkten und Kanten
Quelle: Startscheitelpunkt des am stärksten begrenzten Pfades
Einschränkungen: Einschränkungen oder Hindernisse an den Rändern
Initialisieren Sie einen Satz verschwundener Scheitelpunkte und eine Bedarfslinie, um die Scheitelpunkte und ihre Abstände zu speichern.
Erstellen Sie einen Löschcluster und setzen Sie die Löschung für alle Scheitelpunkte auf Endbarkeit, mit Ausnahme des Quellscheitelpunkts, der auf 0 gesetzt ist.
Ordnen Sie die Quellscheitelpunkte entsprechend ihrem Abstand in den gewünschten Reihen an.
Auch wenn die Nachfragepipeline nicht gelöscht werden kann, gehen Sie bitte wie folgt vor:
Entfernen Sie den Scheitelpunkt mit der geringsten Anzahl an Eliminierungen aus der gewünschten Warteschlange.
Wenn der Scheitelpunkt jetzt nicht mehr besucht wird,
Markieren Sie es als besucht.
Für jeden angrenzenden Scheitelpunkt eines modernen Scheitelpunkts:
Wenden Sie Kantenbarrieren an, um festzustellen, ob eine Kante in Betracht gezogen werden kann.
Berechnen Sie den ungenutzten Abstand von Speisescheitelpunkten zu benachbarten Scheitelpunkten unter Berücksichtigung von Kantengewichten und Einschränkungen.
Verbessern Sie das Trennzeichen-Array, wenn die aktuellen Trennzeichen kürzer als moderne Trennzeichen sind.
Stellen Sie benachbarte Eckpunkte mit ihrem ungenutzten Abstand in die gewünschte Reihe.
Nachdem alle Scheitelpunkte erreicht sind, enthält ein separater Cluster die maximale kurze Entfernung vom Versorgungsscheitelpunkt zu jedem Scheitelpunkt, der die Kantenbeschränkungen erfüllt.
Einzelne Cluster als Ergebnisse zurückgeben.
示例
#include <iostream> #include <vector> #include <limits> struct Edge { int destination; int weight; }; void dijkstra(const std::vector<std::vector<Edge>>& graph, int source, std::vector<int>& distance) { int numVertices = graph.size(); std::vector<bool> visited(numVertices, false); distance.resize(numVertices, std::numeric_limits<int>::max()); distance[source] = 0; for (int i = 0; i < numVertices - 1; ++i) { int minDistance = std::numeric_limits<int>::max(); int minVertex = -1; for (int v = 0; v < numVertices; ++v) { if (!visited[v] && distance[v] < minDistance) { minDistance = distance[v]; minVertex = v; } } if (minVertex == -1) break; visited[minVertex] = true; for (const auto& edge : graph[minVertex]) { int destination = edge.destination; int weight = edge.weight; if (!visited[destination] && distance[minVertex] != std::numeric_limits<int>::max() && distance[minVertex] + weight < distance[destination]) { distance[destination] = distance[minVertex] + weight; } } } } int main() { int numVertices = 4; int source = 0; std::vector<std::vector<Edge>> graph(numVertices); // Add edges to the graph (destination, weight) graph[0] = {{1, 10}, {2, 3}}; graph[1] = {{2, 1}, {3, 7}}; graph[2] = {{3, 6}}; std::vector<int> distance; dijkstra(graph, source, distance); // Print the shortest distances from the source vertex std::cout << "Shortest distances from vertex " << source << ":\n"; for (int i = 0; i < numVertices; ++i) { std::cout << "Vertex " << i << ": " << distance[i] << '\n'; } return 0; }
输出
Shortest distances from vertex 0: Vertex 0: 0 Vertex 1: 10 Vertex 2: 3 Vertex 3: 9
结论
本文概述了两个重要的计算,以帮助理解协调和加权图表中的大多数问题。它阐明了易受骗的递归方法和带有边缘限制的 Dijkstra 计算。轻信递归方法包括递归地研究具有精确 k 个边的所有可能的方式,以发现最有限的方式。 Dijkstra 的边命令式计算采用了所需的线和面积规则,成功地找出了图表中从供给顶点到所有不同顶点的最大受限方式。本文包含了计算的具体说明,并给出了测试代码来说明其用法.
Das obige ist der detaillierte Inhalt vonFinden Sie in einem gerichteten gewichteten Graphen den kürzesten Pfad, der genau k Kanten enthält.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.

Die Wahrheit über Probleme mit der Dateibetrieb: Dateiöffnung fehlgeschlagen: unzureichende Berechtigungen, falsche Pfade und Datei besetzt. Das Schreiben von Daten fehlgeschlagen: Der Puffer ist voll, die Datei ist nicht beschreibbar und der Speicherplatz ist nicht ausreichend. Andere FAQs: Langsame Dateitraversal, falsche Textdateicodierung und Binärdatei -Leser -Fehler.

C -Sprachfunktionen sind die Grundlage für die Code -Modularisierung und das Programmaufbau. Sie bestehen aus Deklarationen (Funktionsüberschriften) und Definitionen (Funktionskörper). C Sprache verwendet standardmäßig Werte, um Parameter zu übergeben, aber externe Variablen können auch mit dem Adresspass geändert werden. Funktionen können oder haben keinen Rückgabewert, und der Rückgabewerttyp muss mit der Deklaration übereinstimmen. Die Benennung von Funktionen sollte klar und leicht zu verstehen sein und mit Kamel oder Unterstrich die Nomenklatur. Befolgen Sie das Prinzip der einzelnen Verantwortung und behalten Sie die Funktion ein, um die Wartbarkeit und die Lesbarkeit zu verbessern.

Die Berechnung von C35 ist im Wesentlichen kombinatorische Mathematik, die die Anzahl der aus 3 von 5 Elementen ausgewählten Kombinationen darstellt. Die Berechnungsformel lautet C53 = 5! / (3! * 2!), Was direkt durch Schleifen berechnet werden kann, um die Effizienz zu verbessern und Überlauf zu vermeiden. Darüber hinaus ist das Verständnis der Art von Kombinationen und Beherrschen effizienter Berechnungsmethoden von entscheidender Bedeutung, um viele Probleme in den Bereichen Wahrscheinlichkeitsstatistik, Kryptographie, Algorithmus -Design usw. zu lösen.

Die Definition des C -Sprachfunktionsname enthält: Rückgabewerttyp, Funktionsname, Parameterliste und Funktionsbehörde. Funktionsnamen sollten klar, präzise und einheitlich sein, um Konflikte mit Schlüsselwörtern zu vermeiden. Funktionsnamen haben Bereiche und können nach der Deklaration verwendet werden. Funktionszeiger ermöglichen es, Funktionen zu übergeben oder als Argumente zugeordnet zu werden. Zu den häufigen Fehlern gehören die Benennung von Konflikten, die Nichtübereinstimmung von Parametertypen und nicht deklarierte Funktionen. Die Leistungsoptimierung konzentriert sich auf das Funktionsdesign und die Implementierung, während ein klarer und einfach zu lesender Code von entscheidender Bedeutung ist.

C Sprachmultithreading -Programmierhandbuch: Erstellen von Threads: Verwenden Sie die Funktion pThread_create (), um Thread -ID, Eigenschaften und Threadfunktionen anzugeben. Threadsynchronisation: Verhindern Sie den Datenwettbewerb durch Mutexes, Semaphoren und bedingte Variablen. Praktischer Fall: Verwenden Sie Multi-Threading, um die Fibonacci-Nummer zu berechnen, mehrere Threads Aufgaben zuzuweisen und die Ergebnisse zu synchronisieren. Fehlerbehebung: Lösen Sie Probleme wie Programmabstürze, Thread -Stop -Antworten und Leistungs Engpässe.

C -Sprachfunktionen sind wiederverwendbare Codeblöcke. Sie erhalten Input, führen Vorgänge und Rückgabergebnisse aus, die modular die Wiederverwendbarkeit verbessert und die Komplexität verringert. Der interne Mechanismus der Funktion umfasst Parameterübergabe-, Funktionsausführung und Rückgabeteile. Der gesamte Prozess beinhaltet eine Optimierung wie die Funktion inline. Eine gute Funktion wird nach dem Prinzip der einzigen Verantwortung, der geringen Anzahl von Parametern, den Benennungsspezifikationen und der Fehlerbehandlung geschrieben. Zeiger in Kombination mit Funktionen können leistungsstärkere Funktionen erzielen, z. B. die Änderung der externen Variablenwerte. Funktionszeiger übergeben Funktionen als Parameter oder speichern Adressen und werden verwendet, um dynamische Aufrufe zu Funktionen zu implementieren. Das Verständnis von Funktionsmerkmalen und Techniken ist der Schlüssel zum Schreiben effizienter, wartbarer und leicht verständlicher C -Programme.

Wie gibt ich einen Countdown in C aus? Antwort: Verwenden Sie Schleifenanweisungen. Schritte: 1. Definieren Sie die Variable N und speichern Sie die Countdown -Nummer in der Ausgabe. 2. Verwenden Sie die while -Schleife, um n kontinuierlich zu drucken, bis n weniger als 1 ist; 3. Drucken Sie im Schleifenkörper den Wert von n aus; 4. Am Ende der Schleife subtrahieren Sie N um 1, um den nächsten kleineren gegenseitigen gegenseitigen gegenseitigen gegenseitig auszugeben.
