Inhaltsverzeichnis
Einführung
Erfahren Sie mehr über Parallelverarbeitung
Multiple Threading in Python
Beispiel
Ausgabe
Multiprocessing in Python
Asynchrone Python-Programmierung
Example Domain
Wählen Sie die richtige Methode
Fazit
Heim Backend-Entwicklung Python-Tutorial Parallelverarbeitung in Python

Parallelverarbeitung in Python

Sep 11, 2023 pm 11:49 PM
python 多线程 并行处理

Parallelverarbeitung in Python

Einführung

In der heutigen schnelllebigen digitalen Umgebung ist es für Entwickler und Datenwissenschaftler von entscheidender Bedeutung, rechentechnisch schwierige Aufgaben effizient zu erledigen. Glücklicherweise bietet Python aufgrund seiner Anpassungsfähigkeit und seines breiten Ökosystems leistungsstarke Parallelverarbeitungsfunktionen. Wir können erhebliche Leistungssteigerungen erzielen, indem wir schwierige Probleme in kleinere, besser überschaubare Aktivitäten zerlegen und gleichzeitig daran arbeiten.

Pythons Parallelverarbeitungsfunktionen ermöglichen es uns, verfügbare Computerressourcen zu nutzen, um Aktivitäten wie Web Scraping, wissenschaftliche Simulationen und Datenanalyse schneller und effizienter durchzuführen. In diesem Artikel beginnen wir eine Reise durch die Parallelverarbeitung in Python. Wir untersuchen eine Reihe von Methoden, darunter Multiprocessing, asynchrone Programmierung und Multithreading, und erfahren, wie Sie diese effektiv nutzen können, um Leistungshindernisse in Ihrem System zu umgehen. Begleiten Sie uns, wenn wir die volle Leistungsfähigkeit der Parallelverarbeitung in Python ausschöpfen und neue Leistungs- und Produktivitätshöhen erreichen.

Erfahren Sie mehr über Parallelverarbeitung

Das Aufteilen eines Jobs in kleinere Teilaufgaben und deren gleichzeitige Ausführung auf mehreren Prozessoren oder Kernen wird als Parallelverarbeitung bezeichnet. Durch die Parallelverarbeitung kann die Gesamtausführungszeit eines Programms erheblich verkürzt werden, indem die verfügbaren Rechenressourcen effizient genutzt werden. Asynchrone Programmierung, Multiprocessing und Multithreading sind nur einige der parallelen Verarbeitungsmethoden, die Python bietet.

Multiple Threading in Python

Bei der Multithreading-Methode laufen viele Threads gleichzeitig im selben Prozess und teilen sich den gleichen Speicher. Multithreading kann einfach mit dem Threading-Modul von Python implementiert werden. Die Verwendung von Multithreading in Python hat jedoch möglicherweise keine Beschleunigungswirkung auf CPU-intensive Vorgänge, da die Global Interpreter Lock (GIL) nur einem Thread die gleichzeitige Ausführung von Python-Bytecode zulässt. Multithreading kann jedoch für E/A-intensive Aufgaben nützlich sein, da es Threads ermöglicht, andere Vorgänge auszuführen, während sie auf den Abschluss von E/A-Vorgängen warten.

Sehen wir uns ein Beispiel für die Verwendung von Multithreading zum Herunterladen mehrerer Webseiten an:

Beispiel

import threading import requests 
 
def download_page(url): 
    response = requests.get(url)    
print(f"Downloaded {url}") 
 
urls = [ 
    "https://example.com", 
    "https://google.com", 
    "https://openai.com" 
] 
 
threads = [] 
 for url in 
 urls: 
    thread = threading.Thread(target=download_page,
args=(url,))     thread.start()    threads.append(thread) 
 
for thread in threads: 
    thread.join() 
Nach dem Login kopieren

Ausgabe

Downloaded https://example.com 
Downloaded https://google.com 
Downloaded https://openai.com 
Nach dem Login kopieren

Da das obige Code-Snippet mehrere Downloads gleichzeitig durchführen kann, lädt dieses Code-Snippet jede URL in einem eigenen Thread herunter. Die Funktion „join()“ stellt sicher, dass der Hauptthread auf den Abschluss jedes Threads wartet, bevor er fortfährt.

Multiprocessing in Python

Multi-Prozess entspricht Multi-Threading. Durch die Verwendung mehrerer Prozesse verfügt jeder Prozess über seinen eigenen Speicherplatz, was für echte Parallelität sorgt. Das Multiprocessing-Modul von Python bietet eine High-Level-Schnittstelle zur Implementierung mehrerer Prozesse. Multiprocessing eignet sich für CPU-intensive Aufgaben, da jeder Prozess in einem unabhängigen Python-Interpreter ausgeführt wird, wodurch GIL-Multithreading-Einschränkungen vermieden werden.

Im folgenden Code werden mehrere Prozesse verwendet. Sobald die Poolklasse eine Reihe von Arbeitsprozessen erzeugt hat, verteilt die Methode „map()“ die Last auf die verfügbaren Prozesse. Eine Ergebnisliste ist eine Sammlung von Ergebnissen.

Betrachten Sie das folgende Beispiel, in dem wir mehrere Prozesse verwenden, um das Quadrat jeder ganzen Zahl in einer Liste zu berechnen:

Beispiel

import multiprocessing 
 
def square(number):    
return number ** 2 
 
numbers = [1, 2, 3, 4, 5] 
 
with multiprocessing.Pool() as pool: 
    results = pool.map(square, numbers) 
 
print(results) 
Nach dem Login kopieren

Ausgabe

[1, 4, 9, 16, 25] 
Nach dem Login kopieren

Asynchrone Python-Programmierung

Durch die Nutzung nicht blockierender Vorgänge ermöglicht die asynchrone Programmierung die effiziente Ausführung E/A-intensiver Prozesse. Dank des asyncio-Pakets kann Python asynchronen Code mithilfe von Coroutinen, Ereignisschleifen und Futures erstellen. Da Online-Anwendungen und APIs immer beliebter werden, wird die asynchrone Programmierung immer wichtiger.

Die fetch_page()-Coroutine im folgenden Codebeispiel verwendet aiohttp, um Webseiten asynchron abzurufen. Die Methode main() generiert eine Liste von Jobs und verwendet dann asyncio.gather(), um diese Jobs gleichzeitig auszuführen. Um auf den Abschluss einer Aufgabe zu warten und die Ergebnisse zu erhalten, verwenden Sie das Schlüsselwort „await“.

Sehen wir uns ein Beispiel für das asynchrone Abrufen mehrerer Webseiten mit asyncio und aiohttp an:

Beispiel

import asyncio 
import aiohttp 
 
async def fetch_page(url):     async with aiohttp.ClientSession() as session:         async with session.get(url) as response: 
            return await response.text() 
 
async def main(): 
    urls = [ 
        "https://example.com", 
        "https://google.com", 
        "https://openai.com" 
    ] 
 
    tasks = [fetch_page(url) for url in urls]     pages = await asyncio.gather(*tasks)     
print(pages) 
 
asyncio.run(main()) 
Nach dem Login kopieren

Ausgabe

['<!doctype html>\n<html>\n<head>\n    <title>Example Domain</title>\n\n    <meta 
charset="utf-8" />\n    <meta http-equiv="Content-type"content="text/html; charset=utf-8" />\n    <meta name="viewport" content="width=device-width, initialscale=1" />\n    <style type="text/css">\n    body {\n        background-color: #f0f0f2;\n  margin: 0;\n        padding: 0;\n        font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;\n        \n    }\n    div {\n        width: 600px;\n        margin: 5em auto;\n  padding: 50px;\n        background-color: #fff;\n        border-radius: 1em;\n    }\n    a:link, a:visited {\n        color: #38488f;\n        text-decoration: none;\n    }\n    @media (maxwidth: 700px) {\n        body {\n            background-color: #fff;\n        }\n        div {\n  width: auto;\n            margin: 0 auto;\n            border-radius: 0;\n            padding: 1em;\n        }\n    }\n    </style>    \n</head>\n\n<body>\n<div>\n    <h1 id="Example-Domain">Example Domain</h1>\n    <p>This domain is for use in illustrative examples in documents. You may use this\n    domain in literature without prior coordination or asking for permission.</p>\n    <p><a href="https://www.iana.org/domains/example">More information...</a></p>\n</div>\n</body>\n</html>', '<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage" lang="en"><head><meta content="Search the world's information, including webpages, images, videos and more. Google has many special features to help you find exactly what you're looking for." name="description"><meta content="noodp" name="robots"><meta content="text/html; charset=UTF-8" http-equiv="Content-Type"><meta content="/logos/doodles/2021/mom-
and-dad-6116550989716480.2-law.gif" itemprop="image"><link href="/logos/doodles/2021/mom-and-dad-6116550989716480.2-law.gif" rel="icon" type="image/gif"><title>Google</title><script nonce="sJwM0Ptp5a/whzxPtTD8Yw==">(function(){window.google={kEI:'cmKgYY37A7 K09QPhzKuACw',kEXPI:'1354557,1354612,1354620,1354954,1355090,1355493,13556
83,3700267,4029815,4031109,4032677,4036527,4038022,4043492,4045841,4048347,4
048490,4052469,4055589,4056520,4057177,4057696,4060329,4060798,4061854,4062 531,4064696,406 '
Nach dem Login kopieren

Wählen Sie die richtige Methode

Pythons Parallelverarbeitungstechniken variieren je nach den spezifischen Umständen der Aufgabe. Hier sind einige Richtlinien, die Ihnen helfen sollen, fundierte Entscheidungen zu treffen:

Für I/O-intensive Aktivitäten, bei denen die meiste Ausführungszeit damit verbracht wird, auf Eingabe-/Ausgabevorgänge zu warten, ist Multithreading geeignet. Es eignet sich für Aufgaben wie das Herunterladen von Dateien, die Verwendung von APIs und die Bearbeitung von Dateien. Aufgrund des Global Interpreter Lock (GIL) von Python beschleunigt Multithreading CPU-intensive Aktivitäten möglicherweise nicht wesentlich.

Andererseits eignet sich Multi-Processing für CPU-gebundene Aufgaben mit intensiven Berechnungen. Es erreicht echte Parallelität, indem es mehrere Prozesse nutzt, von denen jeder seinen eigenen Speicherplatz hat, und die Einschränkungen der GIL umgeht. Es verursacht jedoch zusätzlichen Overhead in Bezug auf Speicherverbrauch und Kommunikation zwischen Prozessen.

Asynchrone Programmierung mithilfe von Bibliotheken wie Asyncio ist nützlich für E/A-intensive Aktivitäten im Zusammenhang mit Netzwerkvorgängen. Es nutzt nicht blockierende E/A-Operationen, sodass Jobs fortgesetzt werden können, ohne auf den Abschluss jeder Operation warten zu müssen. Dieser Ansatz verwaltet effizient mehrere gleichzeitige Verbindungen und eignet sich daher für die Webserverentwicklung, Web-API-Interaktionen und Web-Scraping. Asynchrone Programmierung minimiert Wartezeiten für E/A-Vorgänge und gewährleistet so Reaktionsfähigkeit und Skalierbarkeit.

Fazit

Pythons Parallelverarbeitungsfunktionen bieten Möglichkeiten zur Steigerung der Effizienz bei Aufgaben, die komplexe Berechnungen erfordern. Unabhängig davon, ob Sie sich für Multithreading, Multiprocessing oder asynchrone Programmierung entscheiden, stellt Python die notwendigen Tools und Module bereit, um die Vorteile der Parallelität effektiv zu nutzen. Indem Sie die Art der Aktivität verstehen und die geeignete Technologie auswählen, können Sie die Vorteile der Parallelverarbeitung maximieren und die Ausführungszeit verkürzen. Erkunden Sie also weiterhin die Parallelität von Python und nutzen Sie sie voll aus, um schnellere und effizientere Anwendungen zu erstellen.

Das obige ist der detaillierte Inhalt vonParallelverarbeitung in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie kann man Node.js oder Python -Dienste in Lampenarchitektur effizient integrieren? Wie kann man Node.js oder Python -Dienste in Lampenarchitektur effizient integrieren? Apr 01, 2025 pm 02:48 PM

Viele Website -Entwickler stehen vor dem Problem der Integration von Node.js oder Python Services unter der Lampenarchitektur: Die vorhandene Lampe (Linux Apache MySQL PHP) Architekturwebsite benötigt ...

Was ist der Grund, warum Pipeline persistente Speicherdateien bei der Verwendung von Scapy Crawler nicht geschrieben werden kann? Was ist der Grund, warum Pipeline persistente Speicherdateien bei der Verwendung von Scapy Crawler nicht geschrieben werden kann? Apr 01, 2025 pm 04:03 PM

Bei der Verwendung von Scapy Crawler kann der Grund, warum Pipeline persistente Speicherdateien nicht geschrieben werden kann? Diskussion beim Lernen, Scapy Crawler für Data Crawler zu verwenden, begegnen Sie häufig auf eine ...

Was ist der Grund, warum der Python -Prozesspool gleichzeitige TCP -Anfragen behandelt und den Kunden dazu bringt, stecken zu bleiben? Was ist der Grund, warum der Python -Prozesspool gleichzeitige TCP -Anfragen behandelt und den Kunden dazu bringt, stecken zu bleiben? Apr 01, 2025 pm 04:09 PM

Python Process Pool verarbeitet gleichzeitige TCP -Anfragen, die dazu führen, dass der Client stecken bleibt. Bei der Verwendung von Python für die Netzwerkprogrammierung ist es entscheidend, gleichzeitige TCP -Anforderungen effizient zu verarbeiten. ...

Wie kann ich die ursprünglichen Funktionen betrachten, die von Python Functools.Partial Object in intern eingekapselt sind? Wie kann ich die ursprünglichen Funktionen betrachten, die von Python Functools.Partial Object in intern eingekapselt sind? Apr 01, 2025 pm 04:15 PM

Erforschen Sie tief die Betrachtungsmethode von Python Functools.Partialial Object in functools.Partial mit Python ...

Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Python Cross-Platform Desktop-Anwendungsentwicklung: Welche GUI-Bibliothek ist die beste für Sie? Python Cross-Platform Desktop-Anwendungsentwicklung: Welche GUI-Bibliothek ist die beste für Sie? Apr 01, 2025 pm 05:24 PM

Auswahl der Python-plattformübergreifenden Desktop-Anwendungsentwicklungsbibliothek Viele Python-Entwickler möchten Desktop-Anwendungen entwickeln, die sowohl auf Windows- als auch auf Linux-Systemen ausgeführt werden können ...

Python Hourglass Graph Drawing: Wie vermeiden Sie variable undefinierte Fehler? Python Hourglass Graph Drawing: Wie vermeiden Sie variable undefinierte Fehler? Apr 01, 2025 pm 06:27 PM

Erste Schritte mit Python: Hourglas -Grafikzeichnung und Eingabeüberprüfung In diesem Artikel wird das Problem der Variablendefinition gelöst, das von einem Python -Anfänger im Hourglass -Grafikzeichnungsprogramm auftritt. Code...

Wie kann ich große Produktdatensätze in Python effizient zählen und sortieren? Wie kann ich große Produktdatensätze in Python effizient zählen und sortieren? Apr 01, 2025 pm 08:03 PM

Datenkonvertierung und Statistik: Effiziente Verarbeitung großer Datensätze In diesem Artikel werden ausführlich das Umwandeln einer Datenliste in eine andere enthält ...

See all articles