Inhaltsverzeichnis
Installationsschritte
Grundlegende Methode
Algorithmus
Beispiel
Ausgabe
Fazit
Heim Backend-Entwicklung Python-Tutorial Stimmungsklassifizierung mithilfe des NRC-Wörterbuchs in Python

Stimmungsklassifizierung mithilfe des NRC-Wörterbuchs in Python

Sep 12, 2023 am 08:13 AM
python NRC-Wörterbuch Stimmungsklassifizierung

Stimmungsklassifizierung mithilfe des NRC-Wörterbuchs in Python

Emotionserkennung oder Erkennung ist die Fähigkeit einer Person oder eines Objekts, eine bestimmte in der Umgebung angezeigte Emotion wahrzunehmen und sie in eine von mehreren Emotionskategorien einzuordnen.

Die

Stimmungsklassifizierung in Python ist eine praktikable Alternative zu herkömmlichen Stimmungsanalysetechniken, die Wörter oder Sätze als positiv oder negativ markieren und ihnen entsprechend Polaritätswerte zuweisen.

Die Grundidee dieses Algorithmus besteht darin, den menschlichen Denkprozess nachzuahmen, der versucht, Wörter, die Emotionen darstellen, aus dem Text zu segmentieren. Die Analyse erfolgt mithilfe eines Trainingsdatensatzes, bei dem ein voreingestellter Satz an Informationen als Grundlage für die Klassifizierung in das System eingespeist wird.

Dies ist ein Paket, das auf dem WordNet-Thesaurus in der NLTK-Bibliothek und dem Sentiment-Lexikon des National Research Council of Canada (NRC) basiert, das über 27.000 Begriffe enthält.

Die Bibliothek verwendet die folgenden Kategorien, um die emotionale Wirkung von Wörtern zu messen und zu klassifizieren –

  • Angst

  • Wütend

  • Ich freue mich darauf

  • Vertrauen

  • Überraschung

  • Positiv

  • Negativ

  • Traurig

  • angewidert

  • Freude

Installationsschritte

  • Schritt 1 – Installieren Sie das NRC-Modul mit dem Befehl „pip install“ im Terminal.

pip install NRCLex
Nach dem Login kopieren
Wenn Sie Windows verwenden, erfolgt die

Installation von

Notebook und Eingabeaufforderungin Jupyter im Allgemeinen nach denselben Schritten.

Die Installation in MacO folgt ebenfalls dem gleichen Befehl. Nutzen Sie direkt das Terminal.

  • Schritt 2 – Installieren Sie außerdem Textblob und nrclex, um zu vermeiden, dass MissingCorpusError

  • auftritt
    pip install textblob
    
    Nach dem Login kopieren
    • Schritt 3 – Korpus vom Textblob herunterladen

    python -m textblob.download_corpora
    
    Nach dem Login kopieren

    Nach der Installation können wir mit dem Importieren der Bibliothek fortfahren und Textobjekte erstellen.

    Grundlegende Methode

    1. Originaltext in gefilterten Text (für beste Ergebnisse sollte „Text“ Unicode sein).

    text_object.load_raw_text(text: str)
    Nach dem Login kopieren

    2. Konvertieren Sie eine tokenisierte Wortliste in eine Token-Liste

    text_object.load_token_list(list_of_tokens: list)
    Nach dem Login kopieren

    3. Zurück zur Wortliste.

    text_object.words
    Nach dem Login kopieren

    4. Gibt eine Liste von Sätzen zurück.

    text_object.sentences
    Nach dem Login kopieren

    5. Gibt die Auswirkungsliste zurück.

    text_object.affect_list
    Nach dem Login kopieren

    6. Gibt ein Wörterbuch mit Effekten zurück.

    text_object.affect_dict
    Nach dem Login kopieren

    7. Geben Sie die Anzahl der rohen Emotionen zurück.

    text_object.raw_emotion_scores
    Nach dem Login kopieren

    8. Kehren Sie zu den höchsten Emotionen zurück.

    text_object.top_emotions
    Nach dem Login kopieren

    9. Rücklauffrequenz.

    Text_object.frequencies
    Nach dem Login kopieren

    Hier verwenden wir die Funktion top_emotions, um eine Liste von Wörtern basierend auf Emotionen zu klassifizieren.

    Algorithmus

    Schritt 1 – nrclex importieren nrclex importieren

    Schritt 2 – NRCEx aus nrclex importieren

    Schritt 3 – Initialisieren Sie die Liste der Zeichenfolgenwörter, die Sie klassifizieren möchten

    Schritt 4 - für i

    im Bereich len(text)

    Schritt 4 – Sentiment = NRCLex(text[i]) #Erstellen Sie für jeden Text ein Objekt

    Schritt 5 - emotions.top_emotions #Emotionen klassifizieren

    Beispiel

    # Import module
    import nrclex
    from nrclex import NRCLex
    
    text = ['happy', 'beautiful', 'exciting', 'depressed']
    
    # Iterate through list
    for i in range(len(text)):
    
       # call by object creation
       emotion = NRCLex(text[i])
    
       # Classify emotion
       print('\n', text[i], ': ', emotion.top_emotions) 
    
    Nach dem Login kopieren

    Ausgabe

    innocent : [('trust', 0.5), ('positive', 0.5)]
    hate : [('fear', 0.2), ('anger', 0.2), ('negative', 0.2), ('sadness', 0.2), ('disgust', 0.2)]
    irritating : [('anger', 0.3333333333333333), ('negative', 0.3333333333333333), 
    ('disgust', 0.3333333333333333)]
    annoying : [('anger', 0.5), ('negative', 0.5)]
    
    Nach dem Login kopieren

    Algorithmus

    Schritt 1 – nrclex importieren

    Schritt 2 – NRCEx aus nrclex importieren

    Schritt 3 – Initialisieren Sie die Liste der Zeichenfolgenwörter, die Sie klassifizieren möchten

    Schritt 4 – für mich im Bereich len(text)

    Schritt 4 – Sentiment = NRCLex(text[i]) #Erstellen Sie für jeden Text ein Objekt

    Schritt 5 - emotions.top_emotions #Emotionen klassifizieren

    Beispiel

    import nrclex
    from nrclex import NRCLex
     
    # Assign list of strings
    text = ['innocent','hate', 'irritating','annoying']
     
    # Iterate through list
    for i in range(len(text)):
     
       # Create object
       emotion = NRCLex(text[i])
    
       # Classify emotion
       print('\n\n', text[i], ': ', emotion.top_emotions) 
    
    Nach dem Login kopieren

    Ausgabe

    innocent :  [('trust', 0.5), ('positive', 0.5)] 
     hate :  [('fear', 0.2), ('anger', 0.2), ('negative', 0.2), ('sadness', 0.2), ('disgust', 0.2)] 
    irritating :  [('anger', 0.3333333333333333), ('negative', 0.3333333333333333), ('disgust', 0.3333333333333333)] 
     annoying :  [('anger', 0.5), ('negative', 0.5)] 
    
    Nach dem Login kopieren

    Fazit

    Das NRC-Stimmungswörterbuch wird häufig bei Stimmungsanalysen und Stimmungsklassifizierungsaufgaben in Forschung und Industrie verwendet. Dies bedeutet, dass eine große Benutzergemeinschaft und Ressourcen für Support und Weiterentwicklung zur Verfügung stehen. NRCEx nutzt außerdem Google Translate, um eine stabile Ausgabe für mehr als 100 Sprachen auf der ganzen Welt bereitzustellen und so Sprachbarrieren erfolgreich abzubauen. Dies hat vielfältige Anwendungsmöglichkeiten im Gesundheitswesen und kann helfen, die Reaktionen auf Pandemien zu verstehen. Zu den praktischen Anwendungen gehören Psychologie und Verhaltenswissenschaften, die Erkennung gefälschter Nachrichten und eine verbesserte Mensch-Computer-Interaktion.

    Das obige ist der detaillierte Inhalt vonStimmungsklassifizierung mithilfe des NRC-Wörterbuchs in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

PHP und Python: Verschiedene Paradigmen erklärt PHP und Python: Verschiedene Paradigmen erklärt Apr 18, 2025 am 12:26 AM

PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

Wählen Sie zwischen PHP und Python: Ein Leitfaden Wählen Sie zwischen PHP und Python: Ein Leitfaden Apr 18, 2025 am 12:24 AM

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Apr 16, 2025 am 12:12 AM

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Kann Visual Studio -Code in Python verwendet werden Kann Visual Studio -Code in Python verwendet werden Apr 15, 2025 pm 08:18 PM

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.

Kann gegen Code in Windows 8 ausgeführt werden Kann gegen Code in Windows 8 ausgeführt werden Apr 15, 2025 pm 07:24 PM

VS -Code kann unter Windows 8 ausgeführt werden, aber die Erfahrung ist möglicherweise nicht großartig. Stellen Sie zunächst sicher, dass das System auf den neuesten Patch aktualisiert wurde, und laden Sie dann das VS -Code -Installationspaket herunter, das der Systemarchitektur entspricht und sie wie aufgefordert installiert. Beachten Sie nach der Installation, dass einige Erweiterungen möglicherweise mit Windows 8 nicht kompatibel sind und nach alternativen Erweiterungen suchen oder neuere Windows -Systeme in einer virtuellen Maschine verwenden müssen. Installieren Sie die erforderlichen Erweiterungen, um zu überprüfen, ob sie ordnungsgemäß funktionieren. Obwohl VS -Code unter Windows 8 möglich ist, wird empfohlen, auf ein neueres Windows -System zu upgraden, um eine bessere Entwicklungserfahrung und Sicherheit zu erzielen.

PHP und Python: Ein tiefes Eintauchen in ihre Geschichte PHP und Python: Ein tiefes Eintauchen in ihre Geschichte Apr 18, 2025 am 12:25 AM

PHP entstand 1994 und wurde von Rasmuslerdorf entwickelt. Es wurde ursprünglich verwendet, um Website-Besucher zu verfolgen und sich nach und nach zu einer serverseitigen Skriptsprache entwickelt und in der Webentwicklung häufig verwendet. Python wurde Ende der 1980er Jahre von Guidovan Rossum entwickelt und erstmals 1991 veröffentlicht. Es betont die Lesbarkeit und Einfachheit der Code und ist für wissenschaftliche Computer, Datenanalysen und andere Bereiche geeignet.

So führen Sie Programme in der terminalen VSCODE aus So führen Sie Programme in der terminalen VSCODE aus Apr 15, 2025 pm 06:42 PM

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.

Ist die VSCODE -Erweiterung bösartig? Ist die VSCODE -Erweiterung bösartig? Apr 15, 2025 pm 07:57 PM

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.

See all articles