Tiefensuche von Teilbäumen in einem Baum mit C++
In diesem Problem erhalten wir einen Binärbaum und müssen DFS von einem bestimmten Knoten aus ausführen, wobei wir den angegebenen Knoten als Root annehmen und DFS von dort aus ausführen.
Nehmen wir im obigen Baum an, dass wir den DFS-Knoten F ausführen müssen.
In diesem Tutorial werden wir einige unorthodoxe Methoden anwenden, um unsere Zeitkomplexität erheblich zu reduzieren, sodass wir diesen Code auch unter Einschränkungen ausführen können.
Methode – Bei diesem Ansatz wählen wir nicht den naiven Ansatz, d. h. wir wenden einfach dfs auf jeden Knoten an, da dies bei höheren Einschränkungen nicht funktioniert. Deshalb versuchen wir, etwas Unorthodoxes zu verwenden, um den Erhalt eines TLE zu vermeiden.
#include <bits/stdc++.h> using namespace std; #define N 100000 // Adjacency list to store the // tree nodes connections vector<int> v[N]; unordered_map<int, int> mape; // will be used for associating the node with it's index vector<int> a; void dfs(int nodesunder[], int child, int parent){ // function for dfs and precalculation our nodesunder a.push_back(child); // storing the dfs of our tree // nodesunder of child subtree nodesunder[child] = 1; for (auto it : v[child]) { // performing normal dfs if (it != parent) { // as we the child can climb up to //it's parent so we are trying to avoid that as it will become a cycle dfs(nodesunder, it, child); // recursive call nodesunder[child] += nodesunder[it]; // storing incrementing the nodesunder //by the number of nodes under it's children } } } // Function to print the DFS of subtree of node void printDFS(int node, int nodesunder[]){ int ind = mape[node]; // index of our node in the dfs array cout << "The DFS of subtree " << node << ": "; // print the DFS of subtree for (int i = ind; i < ind + nodesunder[node]; i++){ // going through dfs array and then //printing all the nodes under our given node cout << a[i] << " "; } cout << endl; } void addEdgetoGraph(int x, int y){ // for maintaining adjacency list v[x].push_back(y); v[y].push_back(x); } void mark(){ // marking each node with it's index in dfs array int size = a.size(); // marks the index for (int i = 0; i < size; i++) { mape[a[i]] = i; } } int main(){ int n = 7; // add edges of a tree addEdgetoGraph(1, 2); addEdgetoGraph(1, 3); addEdgetoGraph(2, 4); addEdgetoGraph(2, 5); addEdgetoGraph(4, 6); addEdgetoGraph(4, 7); // array to store the nodes present under of subtree // of every node in a tree int nodesunder[n + 1]; dfs(nodesunder, 1, 0); // generating our nodesunder array mark(); // marking the indices in map // Query 1 printDFS(2, nodesunder); // Query 2 printDFS(4, nodesunder); return 0; }
Ausgabe
The DFS of subtree 2: 2 4 6 7 5 The DFS of subtree 4: 4 6 7
Verstehen Sie den Code
Bei dieser Methode berechnen wir die Reihenfolge von dfs vorab und speichern sie im Vektor. Wenn wir dfs vorab berechnen, berechnen wir auch jeden Teilbaum, beginnend mit jedem Knoten, der unter then existiert, und dann einfach Gehen Sie vom Startindex des Knotens zur Anzahl aller Knoten, die in seinem Unterbaum vorhanden sind.
Fazit
In diesem Tutorial haben wir ein Problem gelöst, um die folgende Abfrage zu lösen: DFS von Teilbäumen in einem Baum. Wir haben auch ein C++-Programm für dieses Problem und eine vollständige Methode zur Lösung dieses Problems (Normal) gelernt.
Wir können das gleiche Programm in anderen Sprachen schreiben (wie C, Java, Python usw.). Ich hoffe, dieser Artikel ist hilfreich für Sie.
Das obige ist der detaillierte Inhalt vonTiefensuche von Teilbäumen in einem Baum mit C++. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.

Die Wahrheit über Probleme mit der Dateibetrieb: Dateiöffnung fehlgeschlagen: unzureichende Berechtigungen, falsche Pfade und Datei besetzt. Das Schreiben von Daten fehlgeschlagen: Der Puffer ist voll, die Datei ist nicht beschreibbar und der Speicherplatz ist nicht ausreichend. Andere FAQs: Langsame Dateitraversal, falsche Textdateicodierung und Binärdatei -Leser -Fehler.

C Sprachmultithreading -Programmierhandbuch: Erstellen von Threads: Verwenden Sie die Funktion pThread_create (), um Thread -ID, Eigenschaften und Threadfunktionen anzugeben. Threadsynchronisation: Verhindern Sie den Datenwettbewerb durch Mutexes, Semaphoren und bedingte Variablen. Praktischer Fall: Verwenden Sie Multi-Threading, um die Fibonacci-Nummer zu berechnen, mehrere Threads Aufgaben zuzuweisen und die Ergebnisse zu synchronisieren. Fehlerbehebung: Lösen Sie Probleme wie Programmabstürze, Thread -Stop -Antworten und Leistungs Engpässe.

Algorithmen sind die Anweisungen zur Lösung von Problemen, und ihre Ausführungsgeschwindigkeit und Speicherverwendung variieren. Bei der Programmierung basieren viele Algorithmen auf der Datensuche und Sortierung. In diesem Artikel werden mehrere Datenabruf- und Sortieralgorithmen eingeführt. Die lineare Suche geht davon aus, dass es ein Array gibt [20.500,10,5,100, 1,50] und die Nummer 50 ermitteln muss. Der lineare Suchalgorithmus prüft jedes Element im Array Eins nach eins nach dem anderen, bis der Zielwert gefunden oder das vollständige Array durchquert wird. Der Algorithmus-Flussdiagramm lautet wie folgt: Der Pseudo-Code für die lineare Suche lautet wie folgt: Überprüfen Sie jedes Element: Wenn der Zielwert gefunden wird: Return Return Falsch C-Sprache Implementierung: #includeIntmain (void) {i

Wie gibt ich einen Countdown in C aus? Antwort: Verwenden Sie Schleifenanweisungen. Schritte: 1. Definieren Sie die Variable N und speichern Sie die Countdown -Nummer in der Ausgabe. 2. Verwenden Sie die while -Schleife, um n kontinuierlich zu drucken, bis n weniger als 1 ist; 3. Drucken Sie im Schleifenkörper den Wert von n aus; 4. Am Ende der Schleife subtrahieren Sie N um 1, um den nächsten kleineren gegenseitigen gegenseitigen gegenseitigen gegenseitig auszugeben.

C Sprachdatenstruktur: Überblick über die Schlüsselrolle der Datenstruktur in der künstlichen Intelligenz im Bereich der künstlichen Intelligenz sind Datenstrukturen für die Verarbeitung großer Datenmengen von entscheidender Bedeutung. Datenstrukturen bieten eine effektive Möglichkeit, Daten zu organisieren und zu verwalten, Algorithmen zu optimieren und die Programmeffizienz zu verbessern. Gemeinsame Datenstrukturen, die häufig verwendete Datenstrukturen in der C -Sprache sind: Arrays: Eine Reihe von nacheinander gespeicherten Datenelementen mit demselben Typ. Struktur: Ein Datentyp, der verschiedene Arten von Daten zusammen organisiert und ihnen einen Namen gibt. Linked List: Eine lineare Datenstruktur, in der Datenelemente durch Zeiger miteinander verbunden werden. Stack: Datenstruktur, die dem LEST-In-First-Out-Prinzip (LIFO) folgt. Warteschlange: Datenstruktur, die dem First-In-First-Out-Prinzip (FIFO) folgt. Praktischer Fall: Die benachbarte Tabelle in der Graphentheorie ist künstliche Intelligenz

C -Sprachfunktionen sind wiederverwendbare Codeblöcke, empfangen Parameter für die Verarbeitung und die Rückgabeergebnisse. Es ähnelt dem schweizerischen Armeemesser, mächtig und erfordert sorgfältige Verwendung. Funktionen umfassen Elemente wie das Definieren von Formaten, Parametern, Rückgabetwerten und Funktionskörpern. Die erweiterte Verwendung umfasst Funktionszeiger, rekursive Funktionen und Rückruffunktionen. Häufige Fehler sind Fehlanpassung vom Typ und Vergessen, Prototypen zu deklarieren. Zu den Debugging -Fähigkeiten gehören das Druckvariablen und die Verwendung eines Debuggers. Leistungsoptimierung verwendet Inline -Funktionen. Das Funktionsdesign sollte dem Prinzip der einzigen Verantwortung folgen. Kenntnisse in C -Sprachfunktionen können die Programmierungseffizienz und die Codequalität erheblich verbessern.

Fehlerbehebungstipps für C -Sprachverarbeitungsdateien Wenn Dateien in der C -Sprache verarbeitet werden, können Sie auf verschiedene Probleme stoßen. Das Folgende sind häufig zu Problemen und entsprechende Lösungen: Problem 1: Der Dateicode kann nicht geöffnet werden: Datei*fp = fopen ("myFile.txt", "r"); if (fp == null) {// Datei Öffnen fehlgeschlagen} Grund} Grund: Dateipfad -Fehler -Datei nicht vorhandener Datei -Read -Lösung vorhanden. Charbuffer [100]; size_tread_bytes = fread (Puffer, 1, Siz
