Inhaltsverzeichnis
Das leistungsstärkste Open-Source-Großmodell der Welt
Falcon 180B ist jetzt verfügbar
Prompt-Format
Transformers
Heiße Kommentare von Internetnutzern
Heim Technologie-Peripheriegeräte KI Mit 180 Milliarden Parametern wird das weltweit führende Open-Source-Großmodell Falcon offiziell angekündigt! Zerstöre LLaMA 2, die Leistung liegt nahe an GPT-4

Mit 180 Milliarden Parametern wird das weltweit führende Open-Source-Großmodell Falcon offiziell angekündigt! Zerstöre LLaMA 2, die Leistung liegt nahe an GPT-4

Sep 13, 2023 pm 04:13 PM
ai 模型

Über Nacht hat das weltweit leistungsstärkste Open-Source-Großmodell Falcon 180B das gesamte Internet in Aufruhr versetzt!

Mit 180 Milliarden Parametern hat Falcon das Training auf 3,5 Billionen Token abgeschlossen und liegt direkt an der Spitze der Hugging Face-Rangliste.

Im Benchmark-Test besiegte Falcon 180B Llama 2 in verschiedenen Aufgaben wie Argumentation, Kodierung, Leistungs- und Wissenstests.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Selbst Falcon 180B liegt auf Augenhöhe mit Google PaLM 2 und seine Leistung liegt nahe an GPT-4.

Der leitende NVIDIA-Wissenschaftler Jim Fan stellte dies jedoch in Frage:

- Der Code macht nur 5 % der Falcon-180B-Trainingsdaten aus.

Und Code ist bei weitem die nützlichsten Daten, um die Denkfähigkeit zu verbessern, die Werkzeugnutzung zu beherrschen und KI-Agenten zu verbessern. Tatsächlich ist GPT-3.5 auf der Grundlage von Codex fein abgestimmt.

- Keine Kodierung von Benchmark-Daten.

Ohne Programmierfähigkeiten können Sie nicht behaupten, „besser als GPT-3.5“ oder „nahe an GPT-4“ zu sein. Es sollte ein integraler Bestandteil des Rezepts vor dem Training sein und keine spätere Anpassung sein.

- Für Sprachmodelle mit Parametern größer als 30B ist es an der Zeit, ein Hybrid-Expertensystem (MoE) einzuführen. Bisher haben wir nur OSS MoE LLM

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Werfen wir einen Blick darauf: Was ist der Ursprung des Falcon 180B?

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Das leistungsstärkste Open-Source-Großmodell der Welt

Zuvor hat Falcon drei Modellgrößen auf den Markt gebracht, nämlich 1.3B, 7.5B und 40B.

Offiziell ist Falcon 180B eine aktualisierte Version von 40B. Es wurde von TII, dem weltweit führenden Technologieforschungszentrum in Abu Dhabi, auf den Markt gebracht und steht zur kostenlosen kommerziellen Nutzung zur Verfügung.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Diesmal führten die Forscher technische Innovationen am Basismodell durch, wie beispielsweise die Verwendung von Multi-Query Attention, um die Skalierbarkeit des Modells zu verbessern.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Für den Trainingsprozess basiert Falcon 180B auf Amazon SageMaker, der Cloud-Plattform für maschinelles Lernen von Amazon, und hat das Training mit 3,5 Billionen Token auf bis zu 4096 GPUs abgeschlossen.

Gesamt-GPU-Berechnungszeit, ca. 7.000.000.

Die Parametergröße von Falcon 180B ist 2,5-mal so groß wie die von Llama 2 (70B), und der für das Training erforderliche Rechenaufwand ist 4-mal so groß wie die von Llama 2.

Unter den spezifischen Trainingsdaten ist Falcon 180B hauptsächlich der RefinedWe-Datensatz (der etwa 85 % ausmacht).

Darüber hinaus wird auf einer Mischung aus organisierten Daten wie Gesprächen, technischen Dokumenten und einem kleinen Teil Code trainiert.

Dieser Datensatz vor dem Training ist groß genug, selbst 3,5 Billionen Token belegen nur weniger als eine Epoche.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Der Beamte behauptet, dass Falcon 180B derzeit das „beste“ Open-Source-Großmodell ist. Die spezifische Leistung ist wie folgt:

Beim MMLU-Benchmark übertrifft die Leistung des Falcon 180B Llama 2 70B und GPT. 3.5.

Auf Augenhöhe mit Googles PaLM 2-Large bei HellaSwag, LAMBADA, WebQuestions, Winogrande, PIQA, ARC, BoolQ, CB, COPA, RTE, WiC, WSC und ReCoRD.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Darüber hinaus ist es derzeit das offene Großmodell mit der höchsten Punktzahl (68,74 Punkte) auf der Open-Source-Großmodellliste Hugging Face und übertrifft LlaMA 2 (67,35).

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Falcon 180B ist jetzt verfügbar

Gleichzeitig veröffentlichten die Forscher auch das Chat-Konversationsmodell Falcon-180B-Chat. Das Modell ist auf Konversations- und Unterrichtsdatensätze abgestimmt, die Open-Platypus, UltraChat und Airoboros abdecken.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Jetzt kann jeder eine Demo-Erfahrung machen.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Adresse: https://huggingface.co/tiiuae/falcon-180B-chat

Prompt-Format

Das Basismodell verfügt nicht über ein Prompt-Format, da es sich nicht um eine große Konversation handelt Das Modell wird auch nicht durch Befehle trainiert und reagiert daher nicht im Dialog.

Vorgefertigte Modelle sind eine großartige Plattform für die Feinabstimmung, aber vielleicht sollten Sie sie nicht direkt verwenden. Das Dialogmodell verfügt über einen einfachen Dialogmodus.

System: Add an optional system prompt hereUser: This is the user inputFalcon: This is what the model generatesUser: This might be a second turn inputFalcon: and so on
Nach dem Login kopieren

Transformers

Ab Transformers 4.33 kann Falcon 180B im Hugging Face-Ökosystem verwendet und heruntergeladen werden.

Stellen Sie sicher, dass Sie in Ihrem Hugging Face-Konto angemeldet sind und die neueste Version von Transformers installiert haben:

pip install --upgrade transformershuggingface-cli login
Nach dem Login kopieren

bfloat16

Hier erfahren Sie, wie Sie das Basismodell in bfloat16 verwenden. Da es sich beim Falcon 180B um ein großes Modell handelt, beachten Sie bitte die Hardwareanforderungen.

In dieser Hinsicht sind die Hardwareanforderungen wie folgt:

Es ist ersichtlich, dass Sie mindestens 8X8X A100 80G benötigen, wenn Sie die Falcon 180B vollständig optimieren möchten. Sie benötigen außerdem eine 8XA100 80G GPU.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

from transformers import AutoTokenizer, AutoModelForCausalLMimport transformersimport torchmodel_id = "tiiuae/falcon-180B"tokenizer = AutoTokenizer.from_pretrained(model_id)model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,device_map="auto",)prompt = "My name is Pedro, I live in"inputs = tokenizer(prompt, return_tensors="pt").to("cuda")output = model.generate(input_ids=inputs["input_ids"],attention_mask=inputs["attention_mask"],do_sample=True,temperature=0.6,top_p=0.9,max_new_tokens=50,)output = output[0].to("cpu")print(tokenizer.decode(output)
Nach dem Login kopieren

kann die folgende Ausgabe erzeugen:

My name is Pedro, I live in Portugal and I am 25 years old. I am a graphic designer, but I am also passionate about photography and video.I love to travel and I am always looking for new adventures. I love to meet new people and explore new places.
Nach dem Login kopieren

unter Verwendung von 8-Bit- und 4-Bit-Bits und Bytes

Zusätzlich 8-Bit und 4-Bit. quantisierte Versionen des Falken 180B werden ausgewertet. Es gibt fast keinen Unterschied zu bfloat16!

Das sind gute Nachrichten für die Inferenz, da Benutzer quantisierte Versionen bedenkenlos verwenden können, um die Hardwareanforderungen zu reduzieren.

Beachten Sie, dass die Inferenz in der 8-Bit-Version viel schneller ist als in der 4-Bit-Version. Um die Quantisierung nutzen zu können, müssen Sie die „bitsandbytes“-Bibliothek installieren und beim Laden des Modells die entsprechenden Flags aktivieren:

model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,**load_in_8bit=True,**device_map="auto",)
Nach dem Login kopieren

Conversation Model

Wie oben erwähnt, wurde eine Version des Modells verfeinert Zur Dialogverfolgung wird eine sehr einfache Trainingsvorlage verwendet. Wir müssen dem gleichen Muster folgen, um Argumentationen im Chat-Stil durchzuführen.

Als Referenz können Sie sich die Funktion [format_prompt] in der Chat-Demo ansehen:

def format_prompt(message, history, system_prompt):prompt = ""if system_prompt:prompt += f"System: {system_prompt}\n"for user_prompt, bot_response in history:prompt += f"User: {user_prompt}\n"prompt += f"Falcon: {bot_response}\n"prompt += f"User: {message}\nFalcon:"return prompt
Nach dem Login kopieren

Wie Sie oben sehen können, werden Benutzerinteraktionen und Modellantworten durch die Trennzeichen User: und Falcon: vorangestellt. Wir verbinden sie zu einer Eingabeaufforderung, die den gesamten Gesprächsverlauf enthält. Auf diese Weise kann eine Systemaufforderung zur Anpassung des Build-Stils bereitgestellt werden.

Heiße Kommentare von Internetnutzern

Viele Internetnutzer diskutieren über die wahre Stärke von Falcon 180B.

Absolut unglaublich. Es schlägt GPT-3.5 und liegt auf Augenhöhe mit Googles PaLM-2 Large. Das ist ein Game Changer!

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Ein CEO eines Startups sagte, ich habe den Konversationsroboter Falcon-180B getestet und er sei nicht besser als das Chatsystem Llama2-70B. Auch die HF OpenLLM-Rangliste zeigt gemischte Ergebnisse. Dies ist angesichts der größeren Größe und des größeren Trainingssatzes überraschend.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Zum Beispiel:

Geben Sie einige Gegenstände und lassen Sie Falcon-180B und Llama2-70B diese jeweils beantworten, um zu sehen, was der Effekt ist?

Falcon-180B zählt den Sattel fälschlicherweise als Tier. Llama2-70B antwortete prägnant und gab die richtige Antwort.

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Das obige ist der detaillierte Inhalt vonMit 180 Milliarden Parametern wird das weltweit führende Open-Source-Großmodell Falcon offiziell angekündigt! Zerstöre LLaMA 2, die Leistung liegt nahe an GPT-4. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Welche Methode wird verwendet, um Strings in Objekte in Vue.js umzuwandeln? Welche Methode wird verwendet, um Strings in Objekte in Vue.js umzuwandeln? Apr 07, 2025 pm 09:39 PM

Bei der Konvertierung von Zeichenfolgen in Objekte in Vue.js wird JSON.Parse () für Standard -JSON -Zeichenfolgen bevorzugt. Bei nicht standardmäßigen JSON-Zeichenfolgen kann die Zeichenfolge durch Verwendung regelmäßiger Ausdrücke verarbeitet und Methoden gemäß dem Format oder dekodierten URL-kodiert reduziert werden. Wählen Sie die entsprechende Methode gemäß dem String -Format aus und achten Sie auf Sicherheits- und Codierungsprobleme, um Fehler zu vermeiden.

Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Apr 08, 2025 pm 12:24 PM

Verarbeiten Sie 7 Millionen Aufzeichnungen effizient und erstellen Sie interaktive Karten mit Geospatial -Technologie. In diesem Artikel wird untersucht, wie über 7 Millionen Datensätze mithilfe von Laravel und MySQL effizient verarbeitet und in interaktive Kartenvisualisierungen umgewandelt werden können. Erstes Herausforderungsprojektanforderungen: Mit 7 Millionen Datensätzen in der MySQL -Datenbank wertvolle Erkenntnisse extrahieren. Viele Menschen erwägen zunächst Programmiersprachen, aber ignorieren die Datenbank selbst: Kann sie den Anforderungen erfüllen? Ist Datenmigration oder strukturelle Anpassung erforderlich? Kann MySQL einer so großen Datenbelastung standhalten? Voranalyse: Schlüsselfilter und Eigenschaften müssen identifiziert werden. Nach der Analyse wurde festgestellt, dass nur wenige Attribute mit der Lösung zusammenhängen. Wir haben die Machbarkeit des Filters überprüft und einige Einschränkungen festgelegt, um die Suche zu optimieren. Kartensuche basierend auf der Stadt

So stellen Sie die Zeitüberschreitung von Vue Axios fest So stellen Sie die Zeitüberschreitung von Vue Axios fest Apr 07, 2025 pm 10:03 PM

Um die Zeitüberschreitung für Vue Axios festzulegen, können wir eine Axios -Instanz erstellen und die Zeitleitungsoption angeben: in globalen Einstellungen: vue.Prototyp. $ Axios = axios.create ({Timeout: 5000}); In einer einzigen Anfrage: this. $ axios.get ('/api/user', {timeout: 10000}).

Wie man MySQL löst, kann nicht gestartet werden Wie man MySQL löst, kann nicht gestartet werden Apr 08, 2025 pm 02:21 PM

Es gibt viele Gründe, warum MySQL Startup fehlschlägt und durch Überprüfung des Fehlerprotokolls diagnostiziert werden kann. Zu den allgemeinen Ursachen gehören Portkonflikte (prüfen Portbelegung und Änderung der Konfiguration), Berechtigungsprobleme (Überprüfen Sie den Dienst Ausführen von Benutzerberechtigungen), Konfigurationsdateifehler (Überprüfung der Parametereinstellungen), Datenverzeichniskorruption (Wiederherstellung von Daten oder Wiederaufbautabellenraum), InnoDB-Tabellenraumprobleme (prüfen IBDATA1-Dateien), Plug-in-Ladeversagen (Überprüfen Sie Fehlerprotokolle). Wenn Sie Probleme lösen, sollten Sie sie anhand des Fehlerprotokolls analysieren, die Hauptursache des Problems finden und die Gewohnheit entwickeln, Daten regelmäßig zu unterstützen, um Probleme zu verhindern und zu lösen.

VUE.JS Wie kann man ein Array von String -Typ in ein Array von Objekten umwandeln? VUE.JS Wie kann man ein Array von String -Typ in ein Array von Objekten umwandeln? Apr 07, 2025 pm 09:36 PM

Zusammenfassung: Es gibt die folgenden Methoden zum Umwandeln von VUE.JS -String -Arrays in Objektarrays: Grundlegende Methode: Verwenden Sie die Kartenfunktion, um regelmäßige formatierte Daten zu entsprechen. Erweitertes Gameplay: Die Verwendung regulärer Ausdrücke kann komplexe Formate ausführen, müssen jedoch sorgfältig geschrieben und berücksichtigt werden. Leistungsoptimierung: In Betracht ziehen die große Datenmenge, asynchrone Operationen oder effiziente Datenverarbeitungsbibliotheken können verwendet werden. Best Practice: Clear Code -Stil, verwenden Sie sinnvolle variable Namen und Kommentare, um den Code präzise zu halten.

So verwenden Sie MySQL nach der Installation So verwenden Sie MySQL nach der Installation Apr 08, 2025 am 11:48 AM

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Remote Senior Backend Engineers (Plattformen) benötigen Kreise Remote Senior Backend Engineers (Plattformen) benötigen Kreise Apr 08, 2025 pm 12:27 PM

Remote Senior Backend Engineer Job Vacant Company: Circle Standort: Remote-Büro-Jobtyp: Vollzeitgehalt: 130.000 bis 140.000 US-Dollar Stellenbeschreibung Nehmen Sie an der Forschung und Entwicklung von Mobilfunkanwendungen und öffentlichen API-bezogenen Funktionen, die den gesamten Lebenszyklus der Softwareentwicklung abdecken. Die Hauptaufgaben erledigen die Entwicklungsarbeit unabhängig von RubyonRails und arbeiten mit dem Front-End-Team von React/Redux/Relay zusammen. Erstellen Sie die Kernfunktionalität und -verbesserungen für Webanwendungen und arbeiten Sie eng mit Designer und Führung während des gesamten funktionalen Designprozesses zusammen. Fördern Sie positive Entwicklungsprozesse und priorisieren Sie die Iterationsgeschwindigkeit. Erfordert mehr als 6 Jahre komplexes Backend für Webanwendungen

So optimieren Sie die Datenbankleistung nach der MySQL -Installation So optimieren Sie die Datenbankleistung nach der MySQL -Installation Apr 08, 2025 am 11:36 AM

Die MySQL -Leistungsoptimierung muss von drei Aspekten beginnen: Installationskonfiguration, Indexierung und Abfrageoptimierung, Überwachung und Abstimmung. 1. Nach der Installation müssen Sie die my.cnf -Datei entsprechend der Serverkonfiguration anpassen, z. 2. Erstellen Sie einen geeigneten Index, um übermäßige Indizes zu vermeiden und Abfrageanweisungen zu optimieren, z. B. den Befehl Erklärung zur Analyse des Ausführungsplans; 3. Verwenden Sie das eigene Überwachungstool von MySQL (ShowProcessList, Showstatus), um die Datenbankgesundheit zu überwachen und die Datenbank regelmäßig zu sichern und zu organisieren. Nur durch kontinuierliche Optimierung dieser Schritte kann die Leistung der MySQL -Datenbank verbessert werden.

See all articles