Heim Technologie-Peripheriegeräte KI DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen' zu vermitteln, äußerst effektiv ist.

DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen' zu vermitteln, äußerst effektiv ist.

Sep 13, 2023 pm 04:41 PM
大模型 理论 Optimierer

Dieser Artikel schlägt eine einfache und effektive Methode OPRO vor, die ein großes Sprachmodell als Optimierer verwendet. Die Optimierungsaufgabe kann in natürlicher Sprache beschrieben werden, was besser ist als die von Menschen entworfenen Eingabeaufforderungen.
Optimierung ist in allen Bereichen von entscheidender Bedeutung.

Einige Optimierungen beginnen mit der Initialisierung und aktualisieren dann die Lösung iterativ, um die Zielfunktion zu optimieren. Solche Optimierungsalgorithmen müssen häufig für einzelne Aufgaben angepasst werden, um den spezifischen Herausforderungen des Entscheidungsraums gerecht zu werden, insbesondere bei der ableitungsfreien Optimierung.

In der Studie, die wir als Nächstes vorstellen werden, wählten die Forscher einen anderen Ansatz. Sie verwendeten große Sprachmodelle (LLM), um als Optimierer zu fungieren, und erzielten bei verschiedenen Aufgaben eine bessere Leistung als von Menschen entworfene Hinweise.

Diese Forschung stammt von Google DeepMind. Sie haben eine einfache und effektive Optimierungsmethode OPRO (Optimierung durch PROmpting) vorgeschlagen, bei der die Optimierungsaufgabe in natürlicher Sprache beschrieben werden kann. Die Eingabeaufforderung von LLM kann beispielsweise „Take“ sein „Ein tiefer Atemzug: Lösen Sie dieses Problem Schritt für Schritt“, oder es könnte lauten: „Kombinieren wir unsere numerischen Befehle und unser klares Denken, um die Antwort schnell und genau zu entschlüsseln“ und so weiter.

In jedem Optimierungsschritt generiert LLM eine neue Lösung basierend auf Hinweisen zuvor generierter Lösungen und deren Werten, bewertet dann die neue Lösung und fügt sie dem nächsten Optimierungsschritt Prompt hinzu.

Abschließend wendet die Studie die OPRO-Methode auf die lineare Regression und das Problem des Handlungsreisenden (das berühmte NP-Problem) an und fährt dann mit der Prompt-Optimierung fort, mit dem Ziel, Anweisungen zu finden, die die Aufgabengenauigkeit maximieren.

In diesem Artikel wird eine umfassende Bewertung mehrerer LLMs durchgeführt, darunter Text-Bison und Palm 2-L in der PaLM-2-Modellfamilie sowie gpt-3.5-turbo und gpt-4 in der GPT-Modellfamilie. Das Experiment optimierte die Eingabeaufforderungen für GSM8K und Big-Bench Hard. Die Ergebnisse zeigen, dass die besten von OPRO optimierten Eingabeaufforderungen 8 % höher sind als die manuell erstellten Eingabeaufforderungen für GSM8K und höher als die manuell erstellten Eingabeaufforderungen für die Big-Bench-Hard-Aufgabe. Leistung bis zu 50 %.

DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen zu vermitteln, äußerst effektiv ist.

Adresse des Artikels: https://arxiv.org/pdf/2309.03409.pdf

Chengrun Yang, der Erstautor des Artikels und Forscher bei Google DeepMind, sagte: „Um Leistung zu erbringen Bei der sofortigen Optimierung beginnen wir mit „Lass uns beginnen“. Beginnend mit grundlegenden Anweisungen wie „Lösen Sie das Problem“ oder sogar einer leeren Zeichenfolge verbessern die von OPRO generierten Anweisungen die LLM-Leistung schrittweise. Die in der folgenden Abbildung dargestellte Aufwärtsleistungskurve sieht genauso aus wie die Situation bei der traditionellen Optimierung! Menschen und können auf ähnliche Aufgaben übertragen werden. IT und Text-Bison sind prägnanter, während die Anweisungen von GPT lang und detailliert sind. Obwohl einige Anweisungen der obersten Ebene „Schritt-für-Schritt“-Eingabeaufforderungen enthalten, kann OPRO andere semantische Ausdrücke finden und eine vergleichbare oder bessere Genauigkeit erreichen.

Einige Forscher sagten jedoch: „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen.“ Dieser Tipp ist auf Googles PaLM-2 (Genauigkeitsrate 80,2) sehr effektiv. Wir können jedoch nicht garantieren, dass es bei allen Modellen und in allen Situationen funktioniert, daher sollten wir es nicht überall blind verwenden. DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen zu vermitteln, äußerst effektiv ist.

OPRO: LLM als Optimierer

Abbildung 2 zeigt das Gesamtgerüst von OPRO. Bei jedem Optimierungsschritt generiert LLM Kandidatenlösungen für die Optimierungsaufgabe basierend auf der Beschreibung des Optimierungsproblems und zuvor bewerteten Lösungen im Meta-Prompt (unterer rechter Teil von Abbildung 2).

Als nächstes bewertet LLM die neuen Lösungen und fügt sie zu Metatipps für den anschließenden Optimierungsprozess hinzu.

Der Optimierungsprozess wird beendet, wenn LLM keine neue Lösung mit einem besseren Optimierungswert vorschlägt oder die maximale Anzahl an Optimierungsschritten erreicht.

DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen zu vermitteln, äußerst effektiv ist.

Abbildung 3 zeigt ein Beispiel. Meta-Hinweise enthalten zwei Kerninhalte: Der erste Teil sind die zuvor generierten Hinweise und ihre entsprechende Trainingsgenauigkeit, der zweite Teil ist die Beschreibung des Optimierungsproblems, einschließlich mehrerer zufällig ausgewählter Beispiele aus dem Trainingssatz, um die interessierende Aufgabe zu veranschaulichen.

DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen zu vermitteln, äußerst effektiv ist.

Dieser Artikel demonstriert zunächst das Potenzial von LLM als Optimierer für „mathematische Optimierung“. Die Ergebnisse des linearen Regressionsproblems sind in Tabelle 2 dargestellt:

DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen zu vermitteln, äußerst effektiv ist.

Als nächstes untersucht der Artikel auch die Ergebnisse von OPRO zum Problem des Handlungsreisenden (TSP). Konkret bezieht sich TSP auf einen gegebenen Satz Aus n Knoten und ihren Koordinaten besteht die TSP-Aufgabe darin, den kürzesten Weg ausgehend vom Startknoten zu finden, alle Knoten zu durchqueren und schließlich zum Startknoten zurückzukehren.

DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen zu vermitteln, äußerst effektiv ist.

Experiment

Im Experiment verwendet dieser Artikel das vorab trainierte PaLM 2-L, das durch Anweisungen fein abgestimmte PaLM 2-L, Text-Bison, GPT-3.5-Turbo, und gpt-4 als LLM-Optimierer; vorab trainiertes PaLM 2-L und text-bison als Scorer-LLM.

Beim Bewertungsbenchmark GSM8K geht es um Grundschulmathematik, mit 7473 Trainingsbeispielen und 1319 Testbeispielen; der Big-Bench Hard (BBH)-Benchmark deckt ein breites Themenspektrum ab, das über arithmetisches Denken hinausgeht, einschließlich symbolischer Operationen und gesundem Menschenverstand . Ergebnisse von GSM8K Die Kurve zeigt einen allgemeinen Aufwärtstrend, wobei während des Optimierungsprozesses mehrere Sprünge auftreten:

Als nächstes zeigt dieser Artikel die Ergebnisse der Verwendung des Text-Bison-Scorers und des PaLM 2-L-IT-Optimierers zur Generierung der Q_begin-Anweisung. In diesem Artikel beträgt die Trainingsgenauigkeit zu diesem Zeitpunkt 57,1, ausgehend von leeren Anweisungen, und dann beginnt die Trainingsgenauigkeit zu steigen. Die Optimierungskurve in Abbildung 4 (a) zeigt einen ähnlichen Aufwärtstrend, bei dem es einige Sprünge in der Trainingsgenauigkeit gibt:

BBH-Ergebnisse

DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen zu vermitteln, äußerst effektiv ist.

Abbildung 5 zeigt visuell alle 23 Unterschiede in der Genauigkeit für jeden Aufgabe im Vergleich zur Anweisung „Lass uns Schritt für Schritt denken“ zwischen der BBH-Aufgabe. Zeigt, dass OPRO Anweisungen besser findet als „Lass uns Schritt für Schritt denken“. Bei fast allen Aufgaben gibt es einen großen Vorteil: Die in diesem Dokument enthaltenen Anweisungen übertrafen ihn um mehr als 5 % bei 19/23 Aufgaben mit dem PaLM 2-L-Grader und bei 15/23 Aufgaben mit dem Text-Bison-Grader.

DeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen zu vermitteln, äußerst effektiv ist.

Ähnlich wie bei GSM8K wird in diesem Artikel festgestellt, dass die Optimierungskurven fast aller BBH-Aufgaben einen Aufwärtstrend aufweisen, wie in Abbildung 6 dargestellt.

Das obige ist der detaillierte Inhalt vonDeepMind hat herausgefunden, dass die schnelle Methode, großen Modellen „Atmen Sie tief ein und machen Sie einen Schritt nach dem anderen' zu vermitteln, äußerst effektiv ist.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Die große Model-App Tencent Yuanbao ist online! Hunyuan wird zu einem Allround-KI-Assistenten aufgerüstet, der überall hin mitgenommen werden kann Die große Model-App Tencent Yuanbao ist online! Hunyuan wird zu einem Allround-KI-Assistenten aufgerüstet, der überall hin mitgenommen werden kann Jun 09, 2024 pm 10:38 PM

Am 30. Mai kündigte Tencent ein umfassendes Upgrade seines Hunyuan-Modells an. Die auf dem Hunyuan-Modell basierende App „Tencent Yuanbao“ wurde offiziell eingeführt und kann in den App-Stores von Apple und Android heruntergeladen werden. Im Vergleich zur Hunyuan-Applet-Version in der vorherigen Testphase bietet Tencent Yuanbao Kernfunktionen wie KI-Suche, KI-Zusammenfassung und KI-Schreiben für Arbeitseffizienzszenarien. Yuanbaos Gameplay ist außerdem umfangreicher und bietet mehrere Funktionen für KI-Anwendungen , und neue Spielmethoden wie das Erstellen persönlicher Agenten werden hinzugefügt. „Tencent strebt nicht danach, der Erste zu sein, der große Modelle herstellt.“ Liu Yuhong, Vizepräsident von Tencent Cloud und Leiter des großen Modells von Tencent Hunyuan, sagte: „Im vergangenen Jahr haben wir die Fähigkeiten des großen Modells von Tencent Hunyuan weiter gefördert.“ . In die reichhaltige und umfangreiche polnische Technologie in Geschäftsszenarien eintauchen und gleichzeitig Einblicke in die tatsächlichen Bedürfnisse der Benutzer gewinnen

Das große Bytedance Beanbao-Modell wurde veröffentlicht. Der Full-Stack-KI-Dienst Volcano Engine unterstützt Unternehmen bei der intelligenten Transformation Das große Bytedance Beanbao-Modell wurde veröffentlicht. Der Full-Stack-KI-Dienst Volcano Engine unterstützt Unternehmen bei der intelligenten Transformation Jun 05, 2024 pm 07:59 PM

Tan Dai, Präsident von Volcano Engine, sagte, dass Unternehmen, die große Modelle gut implementieren wollen, vor drei zentralen Herausforderungen stehen: Modelleffekt, Inferenzkosten und Implementierungsschwierigkeiten: Sie müssen über eine gute Basisunterstützung für große Modelle verfügen, um komplexe Probleme zu lösen, und das müssen sie auch Dank der kostengünstigen Inferenzdienste können große Modelle weit verbreitet verwendet werden, und es werden mehr Tools, Plattformen und Anwendungen benötigt, um Unternehmen bei der Implementierung von Szenarien zu unterstützen. ——Tan Dai, Präsident von Huoshan Engine 01. Das große Sitzsackmodell feiert sein Debüt und wird häufig genutzt. Das Polieren des Modelleffekts ist die größte Herausforderung für die Implementierung von KI. Tan Dai wies darauf hin, dass ein gutes Modell nur durch ausgiebigen Gebrauch poliert werden kann. Derzeit verarbeitet das Doubao-Modell täglich 120 Milliarden Text-Tokens und generiert 30 Millionen Bilder. Um Unternehmen bei der Umsetzung groß angelegter Modellszenarien zu unterstützen, wird das von ByteDance unabhängig entwickelte Beanbao-Großmodell durch den Vulkan gestartet

„Defect Spectrum' durchbricht die Grenzen der herkömmlichen Fehlererkennung und erreicht erstmals eine hochpräzise und umfassende semantische Fehlererkennung in der Industrie. „Defect Spectrum' durchbricht die Grenzen der herkömmlichen Fehlererkennung und erreicht erstmals eine hochpräzise und umfassende semantische Fehlererkennung in der Industrie. Jul 26, 2024 pm 05:38 PM

In der modernen Fertigung ist die genaue Fehlererkennung nicht nur der Schlüssel zur Sicherstellung der Produktqualität, sondern auch der Kern für die Verbesserung der Produktionseffizienz. Allerdings mangelt es vorhandenen Datensätzen zur Fehlererkennung häufig an der Genauigkeit und dem semantischen Reichtum, die für praktische Anwendungen erforderlich sind, was dazu führt, dass Modelle bestimmte Fehlerkategorien oder -orte nicht identifizieren können. Um dieses Problem zu lösen, hat ein Spitzenforschungsteam bestehend aus der Hong Kong University of Science and Technology Guangzhou und Simou Technology innovativ den „DefectSpectrum“-Datensatz entwickelt, der eine detaillierte und semantisch reichhaltige groß angelegte Annotation von Industriedefekten ermöglicht. Wie in Tabelle 1 gezeigt, bietet der Datensatz „DefectSpectrum“ im Vergleich zu anderen Industriedatensätzen die meisten Fehleranmerkungen (5438 Fehlerproben) und die detaillierteste Fehlerklassifizierung (125 Fehlerkategorien).

Das NVIDIA-Dialogmodell ChatQA wurde auf Version 2.0 weiterentwickelt, wobei die angegebene Kontextlänge 128 KB beträgt Das NVIDIA-Dialogmodell ChatQA wurde auf Version 2.0 weiterentwickelt, wobei die angegebene Kontextlänge 128 KB beträgt Jul 26, 2024 am 08:40 AM

Die offene LLM-Community ist eine Ära, in der hundert Blumen blühen und konkurrieren. Sie können Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 und viele andere sehen hervorragende Darsteller. Allerdings weisen offene Modelle im Vergleich zu den proprietären Großmodellen GPT-4-Turbo in vielen Bereichen noch erhebliche Lücken auf. Zusätzlich zu allgemeinen Modellen wurden einige offene Modelle entwickelt, die sich auf Schlüsselbereiche spezialisieren, wie etwa DeepSeek-Coder-V2 für Programmierung und Mathematik und InternVL für visuelle Sprachaufgaben.

Google AI gewann die Silbermedaille der IMO Mathematical Olympiad, das mathematische Argumentationsmodell AlphaProof wurde eingeführt und Reinforcement Learning ist zurück Google AI gewann die Silbermedaille der IMO Mathematical Olympiad, das mathematische Argumentationsmodell AlphaProof wurde eingeführt und Reinforcement Learning ist zurück Jul 26, 2024 pm 02:40 PM

Für KI ist die Mathematikolympiade kein Problem mehr. Am Donnerstag hat die künstliche Intelligenz von Google DeepMind eine Meisterleistung vollbracht: Sie nutzte KI, um meiner Meinung nach die eigentliche Frage der diesjährigen Internationalen Mathematikolympiade zu lösen, und war nur einen Schritt davon entfernt, die Goldmedaille zu gewinnen. Der IMO-Wettbewerb, der gerade letzte Woche zu Ende ging, hatte sechs Fragen zu Algebra, Kombinatorik, Geometrie und Zahlentheorie. Das von Google vorgeschlagene hybride KI-System beantwortete vier Fragen richtig und erzielte 28 Punkte und erreichte damit die Silbermedaillenstufe. Anfang dieses Monats hatte der UCLA-Professor Terence Tao gerade die KI-Mathematische Olympiade (AIMO Progress Award) mit einem Millionenpreis gefördert. Unerwarteterweise hatte sich das Niveau der KI-Problemlösung vor Juli auf dieses Niveau verbessert. Beantworten Sie die Fragen meiner Meinung nach gleichzeitig. Am schwierigsten ist es meiner Meinung nach, da sie die längste Geschichte, den größten Umfang und die negativsten Fragen haben

Training mit Millionen von Kristalldaten zur Lösung kristallographischer Phasenprobleme, die Deep-Learning-Methode PhAI wird in Science veröffentlicht Training mit Millionen von Kristalldaten zur Lösung kristallographischer Phasenprobleme, die Deep-Learning-Methode PhAI wird in Science veröffentlicht Aug 08, 2024 pm 09:22 PM

Herausgeber |KX Bis heute sind die durch die Kristallographie ermittelten Strukturdetails und Präzision, von einfachen Metallen bis hin zu großen Membranproteinen, mit keiner anderen Methode zu erreichen. Die größte Herausforderung, das sogenannte Phasenproblem, bleibt jedoch die Gewinnung von Phaseninformationen aus experimentell bestimmten Amplituden. Forscher der Universität Kopenhagen in Dänemark haben eine Deep-Learning-Methode namens PhAI entwickelt, um Kristallphasenprobleme zu lösen. Ein Deep-Learning-Neuronales Netzwerk, das mithilfe von Millionen künstlicher Kristallstrukturen und den entsprechenden synthetischen Beugungsdaten trainiert wird, kann genaue Elektronendichtekarten erstellen. Die Studie zeigt, dass diese Deep-Learning-basierte Ab-initio-Strukturlösungsmethode das Phasenproblem mit einer Auflösung von nur 2 Angström lösen kann, was nur 10 bis 20 % der bei atomarer Auflösung verfügbaren Daten im Vergleich zur herkömmlichen Ab-initio-Berechnung entspricht

Fortgeschrittene Praxis des industriellen Wissensgraphen Fortgeschrittene Praxis des industriellen Wissensgraphen Jun 13, 2024 am 11:59 AM

1. Einführung in den Hintergrund Lassen Sie uns zunächst die Entwicklungsgeschichte von Yunwen Technology vorstellen. Yunwen Technology Company ... 2023 ist die Zeit, in der große Modelle vorherrschen. Viele Unternehmen glauben, dass die Bedeutung von Diagrammen nach großen Modellen stark abgenommen hat und die zuvor untersuchten voreingestellten Informationssysteme nicht mehr wichtig sind. Mit der Förderung von RAG und der Verbreitung von Data Governance haben wir jedoch festgestellt, dass eine effizientere Datenverwaltung und qualitativ hochwertige Daten wichtige Voraussetzungen für die Verbesserung der Wirksamkeit privatisierter Großmodelle sind. Deshalb beginnen immer mehr Unternehmen, darauf zu achten zu wissenskonstruktionsbezogenen Inhalten. Dies fördert auch den Aufbau und die Verarbeitung von Wissen auf einer höheren Ebene, wo es viele Techniken und Methoden gibt, die erforscht werden können. Es ist ersichtlich, dass das Aufkommen einer neuen Technologie nicht alle alten Technologien besiegt, sondern auch neue und alte Technologien integrieren kann.

Der Standpunkt der Natur: Die Erprobung künstlicher Intelligenz in der Medizin ist im Chaos. Was ist zu tun? Der Standpunkt der Natur: Die Erprobung künstlicher Intelligenz in der Medizin ist im Chaos. Was ist zu tun? Aug 22, 2024 pm 04:37 PM

Herausgeber | ScienceAI Basierend auf begrenzten klinischen Daten wurden Hunderte medizinischer Algorithmen genehmigt. Wissenschaftler diskutieren darüber, wer die Werkzeuge testen soll und wie dies am besten geschieht. Devin Singh wurde Zeuge, wie ein pädiatrischer Patient in der Notaufnahme einen Herzstillstand erlitt, während er lange auf eine Behandlung wartete, was ihn dazu veranlasste, den Einsatz von KI zu erforschen, um Wartezeiten zu verkürzen. Mithilfe von Triage-Daten aus den Notaufnahmen von SickKids erstellten Singh und Kollegen eine Reihe von KI-Modellen, um mögliche Diagnosen zu stellen und Tests zu empfehlen. Eine Studie zeigte, dass diese Modelle die Zahl der Arztbesuche um 22,3 % verkürzen können und die Verarbeitung der Ergebnisse pro Patient, der einen medizinischen Test benötigt, um fast drei Stunden beschleunigt. Der Erfolg von Algorithmen der künstlichen Intelligenz in der Forschung bestätigt dies jedoch nur

See all articles