Der Dateityp HDF5 (Hierarchical Data Format 5) wird häufig zum Speichern und Verarbeiten großer und komplexer Datensätze verwendet. Es eignet sich perfekt für wissenschaftliche und industrielle Anwendungen, da es vielseitig, skalierbar und effektiv ist. Python ist eine von vielen Programmiersprachen, mit denen HDF5-Dateien generiert, gelesen und geändert werden können. In diesem Tutorial zeigen wir Ihnen, wie Sie mit HDF5-Dateien in Python arbeiten.
Wir müssen das Paket „h5py“ installieren. Wir können es mit dem Paketinstallationsprogramm pip von Python installieren.
pip install h5py
Um HDF5-Dateien in Python zu erstellen, müssen wir zunächst eine Instanz der Klasse „h5py.File“ erstellen. Wir können diese Instanz dann verwenden, um Datensätze und Gruppen in der Datei zu erstellen und zu bearbeiten.
import h5py file = h5py.File("filename.hdf5", "w")
Importieren von h5pyModulen
Das h5py-Objekt sollte mit dem Header und Modus aus dem Dateityp erstellt werden („w“ für Schreiben, „r“ für Lesen)
Verwenden Sie die Funktionen „Datensatz erstellen“ und „Gruppe erstellen“, um Datensätze und Gruppen innerhalb von Dateien zu erstellen.
Füllen Sie den Datensatz mit der typischen NumPy-Array-Notation aus.
Verwenden Sie die „Schließen“-Technik, um Objektspeicher freizugeben und Daten in die Datei zu schreiben.
import h5py # Create a new HDF5 file file = h5py.File("example.hdf5", "w") # Create a dataset dataset = file.create_dataset("data", shape=(10,), dtype='i') # Write data to the dataset for i in range(10): dataset[i] = i # Close the file file.close()
"example.hdf5" mit Schreibberechtigungen. Erstellen Sie dann eine Sammlung mit dem Namen "data", die die Form (10,) hat und deren Datentyp Ganzzahl ist. Anschließend verwenden wir eine Schleife, um Zahlen im Bereich von 0 bis 9 in den Datensatz einzufügen. Um Speicherlecks zu verhindern und sicherzustellen, dass alle Daten in die Datei übernommen wurden, entfernen wir sie am Ende. Dieser Code zeigt, wie Sie mit dem Python-h5py-Modul eine neue HDF5-Datei und einen neuen Datensatz erstellen und Daten hinzufügen.
Daten aus vorhandenen HDF5-Dateien lesen
import h5py import numpy as np # Open an existing HDF5 file file = h5py.File("example.hdf5", "r") # Read the dataset into a NumPy array dataset = file["data"] data = np.array(dataset) # Close the file file.close() # Print the data print(data)
[0 1 2 3 4 5 6 7 8 9]
example.hdf5 gelesen, entschlüsselt und auf der Konsole gedruckt.
Fazith5py-Modul bietet eine leicht verständliche API zum Generieren, Lesen und Schreiben von HDF5-Dateien, sodass HDF5 problemlos in Python-Anwendungen integriert werden kann. HDF5 ist aufgrund seiner vielfältigen Einsatzmöglichkeiten ein nützliches Tool für alle, die mit großen Dateien in Python arbeiten.
Das obige ist der detaillierte Inhalt vonHDF5-Dateien in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!