Inhaltsverzeichnis
Finden Sie den richtigen Anwendungsfall
Künstliche Intelligenz ist kein Allheilmittel. Keine Lösung wird alle oder die meisten Ihrer Probleme lösen. Als Faustregel gilt, dass KI am besten funktioniert, wenn sie zur Lösung eines bestimmten Problems oder einer Reihe von Problemen eingesetzt wird, die sehr eng miteinander verbunden sind.
(1) Wartung nur bei Bedarf
Predictive Maintenance nutzt Algorithmen, um den nächsten Ausfall einer Komponente/Maschine/System vorherzusagen, anstatt Wartungsarbeiten nach einem vorgegebenen Zeitplan durchzuführen oder ein SCADA-System mit manuell codierten Schwellenwerten, Alarmregeln und Konfigurationen zu verwenden. Das Personal kann dann daran erinnert werden, gezielte Wartungsmaßnahmen durchzuführen, um Ausfälle zu verhindern, aber nicht zu früh, um unnötige Ausfallzeiten zu verschwenden.
Prognostizieren Sie Qualität und Ertrag mithilfe einer kontinuierlichen multivariaten Analyse, die auf Algorithmen für maschinelles Lernen basiert, die speziell darauf trainiert sind, jeden Produktionsprozess genau zu verstehen und automatisch die Grundursachen für prozessbedingte Produktionsverluste zu identifizieren.
Vorteile von künstlicher Intelligenz und maschinellem Lernen für die Fertigung
Heim Technologie-Peripheriegeräte KI Anwendungen von maschinellem Lernen und künstlicher Intelligenz in der Fertigung

Anwendungen von maschinellem Lernen und künstlicher Intelligenz in der Fertigung

Sep 18, 2023 am 10:33 AM
人工智能 机器学习 产量

Mehr Produkte von höherer Qualität zu niedrigsten Kosten herzustellen, ist ein ewiges Ziel der Fertigungsindustrie. Die Revolution der intelligenten Fertigung hat es den Herstellern ermöglicht, dieses Ziel erfolgreicher als je zuvor zu erreichen. Eine der Kerntechnologien, die diese Innovationswelle vorantreibt, ist künstliche Intelligenz. Daten sind zu einer äußerst wertvollen Ressource geworden und die Kosten für deren Erfassung und Speicherung sind niedriger als je zuvor. Dank der Einführung künstlicher Intelligenz (insbesondere maschinellem Lernen) nutzen heute immer mehr Hersteller diese Daten, um ihren Umsatz deutlich zu steigern.

Für viele bedeutet dies eine deutliche Steigerung der Produktionseffizienz und des Durchsatzes durch die Beseitigung der Hauptursachen für Produktionsausfälle und andere damit verbundene Kosten. Natürlich ist es oft leichter gesagt als getan, aus KI einen greifbaren Geschäftswert zu ziehen. Dabei handelt es sich um eine komplexe Technologie mit vielen unterschiedlichen Einsatzmöglichkeiten. Wie können Hersteller den Hype und die leeren Versprechungen durchschauen und in industrielle KI investieren, die ihnen wirklich einen Wettbewerbsvorteil verschaffen kann? , sowohl im Kontext der Fertigung im Allgemeinen als auch innerhalb der Fertigung. Daher sind die Erwartungen an KI in der Regel sehr unrealistisch und reichen von umfassenden Lösungen für Geschäftsprobleme bis hin zu tiefer Skepsis bei der bloßen Erwähnung von KI.

Finden Sie den richtigen Anwendungsfall

Aber wie bei jeder Technologie liegt die Wahrheit irgendwo dazwischen. Im richtigen Umfeld kann künstliche Intelligenz sehr effektiv sein. Das Verständnis dieser Umgebungen und der darauf anwendbaren KI-Technologien ist der Schlüssel zur Festlegung realistischer Geschäftsziele für KI-Anwendungen.

Künstliche Intelligenz ist kein Allheilmittel. Keine Lösung wird alle oder die meisten Ihrer Probleme lösen. Als Faustregel gilt, dass KI am besten funktioniert, wenn sie zur Lösung eines bestimmten Problems oder einer Reihe von Problemen eingesetzt wird, die sehr eng miteinander verbunden sind.

Allgemeine KI ist etwas, vor dem man vorsichtig sein muss: Wenn ein KI-Anbieter behauptet, alles zu tun, kann er wahrscheinlich nichts tun. Nun zurück zum Thema Künstliche Intelligenz in der Fertigung. Es gibt viele potenzielle Anwendungen für künstliche Intelligenz und maschinelles Lernen in der Fertigung, und jeder Anwendungsfall erfordert eine einzigartige Art von künstlicher Intelligenz.

Der folgende Leitfaden bietet eine einfache und effektive Formel für die Auswahl der richtigen industriellen Lösung für künstliche Intelligenz, um spezifische Herausforderungen und Ziele in der Fertigung zu bewältigen.

Der Fokus liegt weiterhin auf maschinellem Lernen und künstlicher Intelligenz, da hier die aufregendsten und wirkungsvollsten Innovationen stattfinden. Diese Formel lässt sich in einem einfachen Diagramm und einer Methodik namens „Industrial AI Quadrant“ zusammenfassen.

Optimierung der nächsten Generation basierend auf maschinellem Lernen

Die beiden Hauptanwendungsfälle von maschinellem Lernen in der Fertigung sind prädiktive Qualität und Ausbeute sowie prädiktive Wartung.

(1) Wartung nur bei Bedarf

Vorausschauende Wartung ist die häufigere von beiden, da Wartungsprobleme und damit verbundene Probleme enorme Kosten verursachen können und dies für Hersteller mittlerweile ein ziemlich häufiges Ziel ist.

Predictive Maintenance nutzt Algorithmen, um den nächsten Ausfall einer Komponente/Maschine/System vorherzusagen, anstatt Wartungsarbeiten nach einem vorgegebenen Zeitplan durchzuführen oder ein SCADA-System mit manuell codierten Schwellenwerten, Alarmregeln und Konfigurationen zu verwenden. Das Personal kann dann daran erinnert werden, gezielte Wartungsmaßnahmen durchzuführen, um Ausfälle zu verhindern, aber nicht zu früh, um unnötige Ausfallzeiten zu verschwenden.

Im Gegensatz dazu berücksichtigen herkömmliche manuelle und halbmanuelle Methoden weder die komplexeren dynamischen Verhaltensmuster von Maschinen noch die Szenariodaten im Zusammenhang mit dem Herstellungsprozess. Beispielsweise könnte ein Sensor an einer Produktionsmaschine einen plötzlichen Temperaturanstieg erkennen. Ein auf statischen Regeln basierendes System berücksichtigt nicht die Tatsache, dass die Maschine sterilisiert wird, und löst weiterhin Fehlalarme aus.

Die Vorteile der vorausschauenden Wartung sind vielfältig und können die Kosten erheblich senken, während in vielen Fällen geplante Ausfallzeiten entfallen.

Durch den Einsatz maschineller Lernalgorithmen zur Vermeidung von Ausfällen kann das System ohne unnötige Unterbrechungen weiterarbeiten. Wenn Reparaturen erforderlich sind, erfolgt dies sehr zentral und die Techniker werden darüber informiert, welche Teile überprüft, repariert und ausgetauscht werden müssen, welche Werkzeuge sie verwenden und welche Methoden sie befolgen müssen.

Vorausschauende Wartung kann auch die verbleibende Nutzungsdauer (RUL) von Maschinen und Anlagen verlängern, da Sekundärschäden verhindert werden können und gleichzeitig weniger Arbeitsaufwand für die Durchführung von Wartungsarbeiten erforderlich ist.

(2) Finden Sie die versteckten Ursachen von Verlusten

Die Vorhersage von Qualität und Ertrag (manchmal auch als prädiktive Qualität bezeichnet) ist ein fortgeschrittenerer Anwendungsfall industrieller künstlicher Intelligenz, der Aufschluss über viele der prozessbasierten Prozesse gibt, mit denen Hersteller konfrontiert sind jeden Tag Versteckte Ursachen für langfristige Produktionsausfälle. Beispiele hierfür sind Qualität, Ausbeute, Abfall, Durchsatz, Energieeffizienz, Emissionen usw., im Wesentlichen alle Verluste, die durch Prozessineffizienzen verursacht werden.

Prognostizieren Sie Qualität und Ertrag mithilfe einer kontinuierlichen multivariaten Analyse, die auf Algorithmen für maschinelles Lernen basiert, die speziell darauf trainiert sind, jeden Produktionsprozess genau zu verstehen und automatisch die Grundursachen für prozessbedingte Produktionsverluste zu identifizieren.

Automatische Empfehlungen und Warnungen können dann generiert werden, um Produktionsteams und Prozessingenieure über drohende Probleme zu informieren und wichtiges Wissen darüber, wie Verluste verhindert werden können, nahtlos weiterzugeben, bevor sie auftreten.

Die Reduzierung dieser Art von Verlusten war schon immer ein Problem für alle Hersteller. Aber auf dem heutigen Markt ist diese Mission von entscheidender Bedeutung. Einerseits sind die Verbrauchererwartungen auf einem Allzeithoch; die globalen Konsumgewohnheiten ändern sich allmählich, auch wenn das Bevölkerungswachstum anhält.

Mehreren Umfragen zufolge wird die Weltbevölkerung bis 2050 um 25 % zunehmen. Andererseits hatten Verbraucher noch nie eine so große Auswahl und fast jedes erdenkliche Produkt war verfügbar.

Aktuelle Umfragen zeigen, dass eine solche große Auswahl dazu führt, dass Verbraucher ihre Lieblingsmarken immer häufiger dauerhaft aufgeben.

Vor diesem Hintergrund können sich Hersteller Prozessineffizienzen und die daraus resultierenden Verluste nicht mehr leisten. Jeder Verlust an Abfall, Ertrag, Qualität oder Ausbeute schmälert ihre Einnahmen.

Die Herausforderung für viele Hersteller besteht darin, dass sie bei der Prozessoptimierung auf einen Engpass stoßen. Manche Ineffizienzen haben keine erkennbare Ursache und können von Prozessexperten nicht erklärt werden. Hier spielt maschinelles Lernen, insbesondere die automatisierte Ursachenanalyse, eine wichtige Rolle.

Vorteile von künstlicher Intelligenz und maschinellem Lernen für die Fertigung

Die Einführung von künstlicher Intelligenz und maschinellem Lernen stellt einen grundlegenden Wandel dar und bringt viele Vorteile mit sich, die weit über die Effizienzsteigerung hinausgehen und neue Geschäftsmöglichkeiten eröffnen.

Zu den unmittelbaren Vorteilen des maschinellen Lernens in der Fertigung gehören:

  • Reduzieren Sie häufige, schmerzhafte prozessbedingte Verluste wie Ausbeute, Ausschuss, Qualität und Durchsatz.
  • Steigern Sie die Produktivität durch die Optimierung von Produktionsprozessen.
  • Erzielen Sie durch optimierte Prozesse ein umfassendes Wachstum und eine Erweiterung der Produktlinien.
  • Kostenreduzierung durch vorausschauende Wartung, was zu weniger Wartungsaktivitäten führt, was geringere Arbeitskosten, weniger Lagerbestände und Materialverschwendung bedeutet. Prognostizieren Sie die verbleibende Nutzungsdauer (RUL). Durch ein besseres Verständnis des Verhaltens von Maschinen und Geräten können Bedingungen geschaffen werden, die die Leistung verbessern und gleichzeitig die Maschinengesundheit erhalten. Predictive RUL eliminiert „unangenehme Überraschungen“, die zu ungeplanten Ausfallzeiten führen.
  • Verbessern Sie das Lieferkettenmanagement durch effizientes Bestandsmanagement und gut überwachte und synchronisierte Produktionsprozesse.
  • Verbessern Sie die Qualitätskontrolle, liefern Sie umsetzbare Erkenntnisse und verbessern Sie kontinuierlich die Produktqualität.
  • Verbessern Sie die Zusammenarbeit zwischen Mensch und Maschine, verbessern Sie die Sicherheitsbedingungen der Mitarbeiter und steigern Sie die Gesamteffizienz.
  • Verbraucherorientierte Fertigung – in der Lage, schnell auf Veränderungen der Marktnachfrage zu reagieren.

Um das Beste aus industriellen KI/ML-Lösungen herauszuholen, müssen Hersteller wissen, welche KI-Lösung am besten für die Bewältigung ihrer Herausforderungen geeignet ist.

Das obige ist der detaillierte Inhalt vonAnwendungen von maschinellem Lernen und künstlicher Intelligenz in der Fertigung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Jun 28, 2024 am 03:51 AM

Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Jun 10, 2024 am 11:08 AM

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Sieben coole technische Interviewfragen für GenAI und LLM Sieben coole technische Interviewfragen für GenAI und LLM Jun 07, 2024 am 10:06 AM

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Jul 25, 2024 am 06:42 AM

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen Jul 17, 2024 pm 06:37 PM

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

GlobalFoundries erschließt Märkte wie KI und erwirbt die Galliumnitrid-Technologie von Tagore Technology und zugehörige Teams GlobalFoundries erschließt Märkte wie KI und erwirbt die Galliumnitrid-Technologie von Tagore Technology und zugehörige Teams Jul 15, 2024 pm 12:21 PM

Laut Nachrichten dieser Website vom 5. Juli veröffentlichte GlobalFoundries am 1. Juli dieses Jahres eine Pressemitteilung, in der die Übernahme der Power-Galliumnitrid (GaN)-Technologie und des Portfolios an geistigem Eigentum von Tagore Technology angekündigt wurde, in der Hoffnung, seinen Marktanteil in den Bereichen Automobile und Internet auszubauen Anwendungsbereiche für Rechenzentren mit künstlicher Intelligenz, um höhere Effizienz und bessere Leistung zu erforschen. Da sich Technologien wie generative künstliche Intelligenz (GenerativeAI) in der digitalen Welt weiterentwickeln, ist Galliumnitrid (GaN) zu einer Schlüssellösung für nachhaltiges und effizientes Energiemanagement, insbesondere in Rechenzentren, geworden. Auf dieser Website wurde die offizielle Ankündigung zitiert, dass sich das Ingenieurteam von Tagore Technology im Rahmen dieser Übernahme mit GF zusammenschließen wird, um die Galliumnitrid-Technologie weiterzuentwickeln. G

See all articles