Heim Java javaLernprogramm So implementieren Sie einen Auswahlsortierungsalgorithmus mit Java

So implementieren Sie einen Auswahlsortierungsalgorithmus mit Java

Sep 19, 2023 am 09:46 AM
算法 选择排序 java实现

So implementieren Sie einen Auswahlsortierungsalgorithmus mit Java

So implementieren Sie den Auswahlsortierungsalgorithmus in Java

Der Auswahlsortierungsalgorithmus ist ein einfacher und intuitiver Sortieralgorithmus. Seine Grundidee besteht darin, das kleinste (oder größte) Element aus den unsortierten Elementen zu finden und am Ende einzufügen der sortierten Folge. So wird nach und nach eine geordnete Abfolge aufgebaut.

Im Folgenden stellen wir anhand von Java-Codebeispielen vor, wie der Auswahlsortierungsalgorithmus implementiert wird.

Code-Implementierung:

public class SelectionSort {

  public static void selectionSort(int[] arr) {
    int n = arr.length;
    
    for (int i = 0; i < n-1; i++) {
        int minIndex = i;
        for (int j = i+1; j < n; j++) {
            if (arr[j] < arr[minIndex]) {
                minIndex = j;
            }
        }
        
        // 将最小元素与当前位置元素交换
        int temp = arr[minIndex];
        arr[minIndex] = arr[i];
        arr[i] = temp;
    }
  }
  
  public static void main(String[] args) {
    int[] arr = {64, 25, 12, 22, 11};
    selectionSort(arr);
    
    System.out.println("排序后的数组:");
    for (int i = 0; i < arr.length; i++) {
        System.out.print(arr[i] + " ");
    }
  }
}
Nach dem Login kopieren

Code-Analyse:

  • Die Methode selectionSort wird verwendet, um den Auswahlsortierungsalgorithmus zu implementieren, und der Parameter arr ist das zu erstellende Ganzzahl-Array sortiert. selectionSort 方法用于实现选择排序算法,参数 arr 是待排序的整型数组。
  • n 变量代表数组的长度。
  • 外层循环从0到 n-1 遍历,确定当前轮次的最小值。
  • 内层循环从 i+1 到 n 遍历,查找未排序部分的最小值索引。
  • 通过比较找到最小值索引后,通过交换元素的位置将最小元素放到已排序序列的末尾。
  • main
  • n Variable stellt die Länge des Arrays dar.

Die äußere Schleife durchläuft von 0 bis n-1, um den Mindestwert der aktuellen Runde zu bestimmen.

Die innere Schleife durchläuft von i+1 nach n und findet den minimalen Index des unsortierten Teils.

Nachdem Sie den Mindestwertindex durch Vergleich ermittelt haben, platzieren Sie das Mindestelement am Ende der sortierten Sequenz, indem Sie die Position der Elemente austauschen. Die Methode

🎜main zeigt, wie der Auswahlsortierungsalgorithmus verwendet wird, um ein Array zu sortieren und die sortierten Ergebnisse auszugeben. 🎜🎜🎜Ergebnisse der Codeausführung: 🎜
排序后的数组:11 12 22 25 64 
Nach dem Login kopieren
🎜Selection Sort ist ein einfacher, aber ineffizienter Sortieralgorithmus mit einer zeitlichen Komplexität von O(n^2). Seine Vorteile liegen jedoch in der einfachen Umsetzung und der klaren Denkweise. Es kann als Grundlage für andere Sortieralgorithmen und zum Verständnis der Funktionsweise von Sortieralgorithmen verwendet werden. 🎜🎜Ich hoffe, dass die obige Codedemonstration Ihnen helfen kann, den Implementierungsprozess des Auswahlsortierungsalgorithmus zu verstehen. Wenn Sie Fragen haben, können Sie diese gerne an mich wenden. 🎜

Das obige ist der detaillierte Inhalt vonSo implementieren Sie einen Auswahlsortierungsalgorithmus mit Java. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

CLIP-BEVFormer: Überwacht explizit die BEVFormer-Struktur, um die Leistung der Long-Tail-Erkennung zu verbessern CLIP-BEVFormer: Überwacht explizit die BEVFormer-Struktur, um die Leistung der Long-Tail-Erkennung zu verbessern Mar 26, 2024 pm 12:41 PM

Oben geschrieben und das persönliche Verständnis des Autors: Derzeit spielt das Wahrnehmungsmodul im gesamten autonomen Fahrsystem eine entscheidende Rolle Das Steuermodul im autonomen Fahrsystem trifft zeitnahe und korrekte Urteile und Verhaltensentscheidungen. Derzeit sind Autos mit autonomen Fahrfunktionen in der Regel mit einer Vielzahl von Dateninformationssensoren ausgestattet, darunter Rundumsichtkamerasensoren, Lidar-Sensoren und Millimeterwellenradarsensoren, um Informationen in verschiedenen Modalitäten zu sammeln und so genaue Wahrnehmungsaufgaben zu erfüllen. Der auf reinem Sehen basierende BEV-Wahrnehmungsalgorithmus wird von der Industrie aufgrund seiner geringen Hardwarekosten und einfachen Bereitstellung bevorzugt, und seine Ausgabeergebnisse können problemlos auf verschiedene nachgelagerte Aufgaben angewendet werden.

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Entdecken Sie die zugrunde liegenden Prinzipien und die Algorithmusauswahl der C++-Sortierfunktion Entdecken Sie die zugrunde liegenden Prinzipien und die Algorithmusauswahl der C++-Sortierfunktion Apr 02, 2024 pm 05:36 PM

Die unterste Ebene der C++-Sortierfunktion verwendet die Zusammenführungssortierung, ihre Komplexität beträgt O(nlogn) und bietet verschiedene Auswahlmöglichkeiten für Sortieralgorithmen, einschließlich schneller Sortierung, Heap-Sortierung und stabiler Sortierung.

Kann künstliche Intelligenz Kriminalität vorhersagen? Entdecken Sie die Möglichkeiten von CrimeGPT Kann künstliche Intelligenz Kriminalität vorhersagen? Entdecken Sie die Möglichkeiten von CrimeGPT Mar 22, 2024 pm 10:10 PM

Die Konvergenz von künstlicher Intelligenz (KI) und Strafverfolgung eröffnet neue Möglichkeiten zur Kriminalprävention und -aufdeckung. Die Vorhersagefähigkeiten künstlicher Intelligenz werden häufig in Systemen wie CrimeGPT (Crime Prediction Technology) genutzt, um kriminelle Aktivitäten vorherzusagen. Dieser Artikel untersucht das Potenzial künstlicher Intelligenz bei der Kriminalitätsvorhersage, ihre aktuellen Anwendungen, die Herausforderungen, denen sie gegenübersteht, und die möglichen ethischen Auswirkungen der Technologie. Künstliche Intelligenz und Kriminalitätsvorhersage: Die Grundlagen CrimeGPT verwendet Algorithmen des maschinellen Lernens, um große Datensätze zu analysieren und Muster zu identifizieren, die vorhersagen können, wo und wann Straftaten wahrscheinlich passieren. Zu diesen Datensätzen gehören historische Kriminalstatistiken, demografische Informationen, Wirtschaftsindikatoren, Wettermuster und mehr. Durch die Identifizierung von Trends, die menschliche Analysten möglicherweise übersehen, kann künstliche Intelligenz Strafverfolgungsbehörden stärken

Verbesserter Erkennungsalgorithmus: zur Zielerkennung in hochauflösenden optischen Fernerkundungsbildern Verbesserter Erkennungsalgorithmus: zur Zielerkennung in hochauflösenden optischen Fernerkundungsbildern Jun 06, 2024 pm 12:33 PM

01Ausblicksübersicht Derzeit ist es schwierig, ein angemessenes Gleichgewicht zwischen Detektionseffizienz und Detektionsergebnissen zu erreichen. Wir haben einen verbesserten YOLOv5-Algorithmus zur Zielerkennung in hochauflösenden optischen Fernerkundungsbildern entwickelt, der mehrschichtige Merkmalspyramiden, Multierkennungskopfstrategien und hybride Aufmerksamkeitsmodule verwendet, um die Wirkung des Zielerkennungsnetzwerks in optischen Fernerkundungsbildern zu verbessern. Laut SIMD-Datensatz ist der mAP des neuen Algorithmus 2,2 % besser als YOLOv5 und 8,48 % besser als YOLOX, wodurch ein besseres Gleichgewicht zwischen Erkennungsergebnissen und Geschwindigkeit erreicht wird. 02 Hintergrund und Motivation Mit der rasanten Entwicklung der Fernerkundungstechnologie wurden hochauflösende optische Fernerkundungsbilder verwendet, um viele Objekte auf der Erdoberfläche zu beschreiben, darunter Flugzeuge, Autos, Gebäude usw. Objekterkennung bei der Interpretation von Fernerkundungsbildern

Anwendung von Algorithmen beim Aufbau einer 58-Porträt-Plattform Anwendung von Algorithmen beim Aufbau einer 58-Porträt-Plattform May 09, 2024 am 09:01 AM

1. Hintergrund des Baus der 58-Portrait-Plattform Zunächst möchte ich Ihnen den Hintergrund des Baus der 58-Portrait-Plattform mitteilen. 1. Das traditionelle Denken der traditionellen Profiling-Plattform reicht nicht mehr aus. Der Aufbau einer Benutzer-Profiling-Plattform basiert auf Data-Warehouse-Modellierungsfunktionen, um Daten aus mehreren Geschäftsbereichen zu integrieren, um genaue Benutzerporträts zu erstellen Und schließlich muss es über Datenplattformfunktionen verfügen, um Benutzerprofildaten effizient zu speichern, abzufragen und zu teilen sowie Profildienste bereitzustellen. Der Hauptunterschied zwischen einer selbst erstellten Business-Profiling-Plattform und einer Middle-Office-Profiling-Plattform besteht darin, dass die selbst erstellte Profiling-Plattform einen einzelnen Geschäftsbereich bedient und bei Bedarf angepasst werden kann. Die Mid-Office-Plattform bedient mehrere Geschäftsbereiche und ist komplex Modellierung und bietet allgemeinere Funktionen. 2.58 Benutzerporträts vom Hintergrund der Porträtkonstruktion im Mittelbahnsteig 58

Fügen Sie SOTA in Echtzeit hinzu und explodieren Sie! FastOcc: Schnellere Inferenz und ein einsatzfreundlicher Occ-Algorithmus sind da! Fügen Sie SOTA in Echtzeit hinzu und explodieren Sie! FastOcc: Schnellere Inferenz und ein einsatzfreundlicher Occ-Algorithmus sind da! Mar 14, 2024 pm 11:50 PM

Oben geschrieben & Das persönliche Verständnis des Autors ist, dass im autonomen Fahrsystem die Wahrnehmungsaufgabe eine entscheidende Komponente des gesamten autonomen Fahrsystems ist. Das Hauptziel der Wahrnehmungsaufgabe besteht darin, autonome Fahrzeuge in die Lage zu versetzen, Umgebungselemente wie auf der Straße fahrende Fahrzeuge, Fußgänger am Straßenrand, während der Fahrt angetroffene Hindernisse, Verkehrszeichen auf der Straße usw. zu verstehen und wahrzunehmen und so flussabwärts zu helfen Module Treffen Sie richtige und vernünftige Entscheidungen und Handlungen. Ein Fahrzeug mit autonomen Fahrfähigkeiten ist in der Regel mit verschiedenen Arten von Informationserfassungssensoren ausgestattet, wie z. B. Rundumsichtkamerasensoren, Lidar-Sensoren, Millimeterwellenradarsensoren usw., um sicherzustellen, dass das autonome Fahrzeug die Umgebung genau wahrnehmen und verstehen kann Elemente, die es autonomen Fahrzeugen ermöglichen, beim autonomen Fahren die richtigen Entscheidungen zu treffen. Kopf

Verwenden Sie Python, um die Prinzipien und praktischen Anwendungsszenarien des Auswahlsortierungsalgorithmus zu erlernen Verwenden Sie Python, um die Prinzipien und praktischen Anwendungsszenarien des Auswahlsortierungsalgorithmus zu erlernen Feb 03, 2024 am 08:26 AM

Lernen Sie die Grundidee und Anwendung der Auswahlsortierung mit Python kennen. Die Auswahlsortierung (SelectionSort) ist ein einfacher und intuitiver Sortieralgorithmus. Seine Grundidee besteht darin, das kleinste (oder größte) Element aus den zu sortierenden Daten auszuwählen und am Ende einzufügen Wählen Sie dann das kleinste (oder größte) Element aus den verbleibenden unsortierten Daten aus und platzieren Sie es am Ende des sortierten Bereichs usw., bis alle Daten sortiert sind. Die spezifischen Schritte der Auswahlsortierung sind wie folgt: Suchen Sie zunächst das kleinste (oder größte) Element aus den zu sortierenden Daten

See all articles