So verwenden Sie Graphsuchalgorithmen in C++
So verwenden Sie den Graphsuchalgorithmus in C++
Der Graphsuchalgorithmus ist ein häufig verwendeter Algorithmus zum Suchen von Pfaden in Graphstrukturen, zum Durchqueren von Knoten oder zum Lösen anderer graphbezogener Probleme. In C++ gibt es viele Implementierungen von Graphsuchalgorithmen, wie z. B. Tiefensuche (DFS), Breitensuche (BFS), Dijkstra-Algorithmus, A*-Algorithmus usw. In diesem Artikel stellen wir die Verwendung von Graphsuchalgorithmen in C++ vor und geben spezifische Codebeispiele.
1. Depth First Search (DFS)
Depth First Search ist ein klassischer Graphsuchalgorithmus. Seine Grundidee besteht darin, die Knoten des Graphen tief zu durchqueren, bis der Zielknoten gefunden wird oder der gesamte Graph durchquert wird. Das Folgende ist ein Beispielcode für die Implementierung von DFS mit C++:
#include <iostream> #include <vector> #include <stack> using namespace std; // 定义图的节点数据结构 struct Node { int val; vector<Node*> neighbors; bool visited; Node(int x) : val(x), visited(false) {} // 初始化节点 }; // 深度优先搜索函数 void dfs(Node* node) { stack<Node*> stk; stk.push(node); while (!stk.empty()) { Node* cur = stk.top(); stk.pop(); if (cur->visited) { continue; } cur->visited = true; // 对当前节点进行操作 cout << cur->val << " "; // 遍历当前节点的邻居节点 for (Node* neighbor : cur->neighbors) { if (!neighbor->visited) { stk.push(neighbor); } } } } int main() { // 构造图 Node* node1 = new Node(1); Node* node2 = new Node(2); Node* node3 = new Node(3); Node* node4 = new Node(4); node1->neighbors.push_back(node2); node1->neighbors.push_back(node4); node2->neighbors.push_back(node1); node2->neighbors.push_back(node3); node3->neighbors.push_back(node2); node3->neighbors.push_back(node4); node4->neighbors.push_back(node1); node4->neighbors.push_back(node3); // 调用深度优先搜索函数 dfs(node1); return 0; }
Im obigen Code definieren wir zunächst die Knotendatenstruktur des Diagramms. Jeder Knoten enthält einen Wert (val) und eine Liste von Nachbarknoten (neighbors). Dann definieren wir einen Stack (stk), um die zu besuchenden Knoten zu speichern. In der DFS-Funktion legen wir zunächst den Startknoten in den Stapel und beginnen dann, iterativ auf die Knoten zuzugreifen. Für jeden Knoten markieren wir ihn als besucht und reagieren darauf (in diesem Fall geben wir einfach den Wert des Knotens aus). Als nächstes durchlaufen wir die Nachbarknoten des aktuellen Knotens und fügen dem Stapel nicht besuchte Nachbarknoten hinzu. Auf diese Weise können wir tiefenorientiert auf das gesamte Diagramm zugreifen.
2. Breitensuche (Breadth First Search)
Breadth First Search ist ein weiterer häufig verwendeter Graphsuchalgorithmus. Seine Grundidee besteht darin, die Knoten des Graphen Schicht für Schicht zu durchlaufen, bis der Zielknoten gefunden oder der gesamte Graph durchlaufen ist. Das Folgende ist ein Beispielcode für die Implementierung von BFS mit C++:
#include <iostream> #include <vector> #include <queue> using namespace std; // 定义图的节点数据结构 struct Node { int val; vector<Node*> neighbors; bool visited; Node(int x) : val(x), visited(false) {} // 初始化节点 }; // 广度优先搜索函数 void bfs(Node* node) { queue<Node*> q; q.push(node); while (!q.empty()) { Node* cur = q.front(); q.pop(); if (cur->visited) { continue; } cur->visited = true; // 对当前节点进行操作 cout << cur->val << " "; // 遍历当前节点的邻居节点 for (Node* neighbor : cur->neighbors) { if (!neighbor->visited) { q.push(neighbor); } } } } int main() { // 构造图 Node* node1 = new Node(1); Node* node2 = new Node(2); Node* node3 = new Node(3); Node* node4 = new Node(4); node1->neighbors.push_back(node2); node1->neighbors.push_back(node4); node2->neighbors.push_back(node1); node2->neighbors.push_back(node3); node3->neighbors.push_back(node2); node3->neighbors.push_back(node4); node4->neighbors.push_back(node1); node4->neighbors.push_back(node3); // 调用广度优先搜索函数 bfs(node1); return 0; }
Im obigen Code verwenden wir die Warteschlange (q), um die zu besuchenden Knoten zu speichern. In der BFS-Funktion stellen wir zunächst den Startknoten in die Warteschlange und beginnen dann, iterativ auf die Knoten zuzugreifen. Für jeden Knoten markieren wir ihn als besucht und reagieren darauf (in diesem Fall geben wir einfach den Wert des Knotens aus). Als nächstes durchlaufen wir die Nachbarknoten des aktuellen Knotens und fügen der Warteschlange nicht besuchte Nachbarknoten hinzu. Auf diese Weise können wir breitenorientiert auf das gesamte Diagramm zugreifen.
3. Implementierung anderer Graphsuchalgorithmen
Zusätzlich zur Tiefensuche und Breitensuche bietet C++ auch Implementierungen vieler anderer Graphsuchalgorithmen, wie zum Beispiel den Dijkstra-Algorithmus und den A*-Algorithmus. Die Implementierung dieser Algorithmen ist etwas komplexer und kann in diesem Artikel nicht dargestellt werden. Sie können jedoch Implementierungen dieser Algorithmen in der C++-Standardbibliothek finden oder Bibliotheken von Drittanbietern verwenden, um sie zu implementieren. Mithilfe dieser Algorithmen können Sie komplexere Diagrammprobleme lösen, z. B. kürzester Weg, kürzeste Entfernung usw.
Zusammenfassend stellt dieser Artikel die Verwendung des Graphsuchalgorithmus in C++ vor und gibt spezifische Codebeispiele für die Tiefensuche und die Breitensuche. Ich hoffe, dieser Artikel kann Ihnen helfen, Diagrammsuchalgorithmen zu verstehen und anzuwenden.
Das obige ist der detaillierte Inhalt vonSo verwenden Sie Graphsuchalgorithmen in C++. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.

Die Wahrheit über Probleme mit der Dateibetrieb: Dateiöffnung fehlgeschlagen: unzureichende Berechtigungen, falsche Pfade und Datei besetzt. Das Schreiben von Daten fehlgeschlagen: Der Puffer ist voll, die Datei ist nicht beschreibbar und der Speicherplatz ist nicht ausreichend. Andere FAQs: Langsame Dateitraversal, falsche Textdateicodierung und Binärdatei -Leser -Fehler.

C -Sprachfunktionen sind die Grundlage für die Code -Modularisierung und das Programmaufbau. Sie bestehen aus Deklarationen (Funktionsüberschriften) und Definitionen (Funktionskörper). C Sprache verwendet standardmäßig Werte, um Parameter zu übergeben, aber externe Variablen können auch mit dem Adresspass geändert werden. Funktionen können oder haben keinen Rückgabewert, und der Rückgabewerttyp muss mit der Deklaration übereinstimmen. Die Benennung von Funktionen sollte klar und leicht zu verstehen sein und mit Kamel oder Unterstrich die Nomenklatur. Befolgen Sie das Prinzip der einzelnen Verantwortung und behalten Sie die Funktion ein, um die Wartbarkeit und die Lesbarkeit zu verbessern.

Die Berechnung von C35 ist im Wesentlichen kombinatorische Mathematik, die die Anzahl der aus 3 von 5 Elementen ausgewählten Kombinationen darstellt. Die Berechnungsformel lautet C53 = 5! / (3! * 2!), Was direkt durch Schleifen berechnet werden kann, um die Effizienz zu verbessern und Überlauf zu vermeiden. Darüber hinaus ist das Verständnis der Art von Kombinationen und Beherrschen effizienter Berechnungsmethoden von entscheidender Bedeutung, um viele Probleme in den Bereichen Wahrscheinlichkeitsstatistik, Kryptographie, Algorithmus -Design usw. zu lösen.

Die Definition des C -Sprachfunktionsname enthält: Rückgabewerttyp, Funktionsname, Parameterliste und Funktionsbehörde. Funktionsnamen sollten klar, präzise und einheitlich sein, um Konflikte mit Schlüsselwörtern zu vermeiden. Funktionsnamen haben Bereiche und können nach der Deklaration verwendet werden. Funktionszeiger ermöglichen es, Funktionen zu übergeben oder als Argumente zugeordnet zu werden. Zu den häufigen Fehlern gehören die Benennung von Konflikten, die Nichtübereinstimmung von Parametertypen und nicht deklarierte Funktionen. Die Leistungsoptimierung konzentriert sich auf das Funktionsdesign und die Implementierung, während ein klarer und einfach zu lesender Code von entscheidender Bedeutung ist.

C -Sprachfunktionen sind wiederverwendbare Codeblöcke. Sie erhalten Input, führen Vorgänge und Rückgabergebnisse aus, die modular die Wiederverwendbarkeit verbessert und die Komplexität verringert. Der interne Mechanismus der Funktion umfasst Parameterübergabe-, Funktionsausführung und Rückgabeteile. Der gesamte Prozess beinhaltet eine Optimierung wie die Funktion inline. Eine gute Funktion wird nach dem Prinzip der einzigen Verantwortung, der geringen Anzahl von Parametern, den Benennungsspezifikationen und der Fehlerbehandlung geschrieben. Zeiger in Kombination mit Funktionen können leistungsstärkere Funktionen erzielen, z. B. die Änderung der externen Variablenwerte. Funktionszeiger übergeben Funktionen als Parameter oder speichern Adressen und werden verwendet, um dynamische Aufrufe zu Funktionen zu implementieren. Das Verständnis von Funktionsmerkmalen und Techniken ist der Schlüssel zum Schreiben effizienter, wartbarer und leicht verständlicher C -Programme.

C Sprachmultithreading -Programmierhandbuch: Erstellen von Threads: Verwenden Sie die Funktion pThread_create (), um Thread -ID, Eigenschaften und Threadfunktionen anzugeben. Threadsynchronisation: Verhindern Sie den Datenwettbewerb durch Mutexes, Semaphoren und bedingte Variablen. Praktischer Fall: Verwenden Sie Multi-Threading, um die Fibonacci-Nummer zu berechnen, mehrere Threads Aufgaben zuzuweisen und die Ergebnisse zu synchronisieren. Fehlerbehebung: Lösen Sie Probleme wie Programmabstürze, Thread -Stop -Antworten und Leistungs Engpässe.

Wie gibt ich einen Countdown in C aus? Antwort: Verwenden Sie Schleifenanweisungen. Schritte: 1. Definieren Sie die Variable N und speichern Sie die Countdown -Nummer in der Ausgabe. 2. Verwenden Sie die while -Schleife, um n kontinuierlich zu drucken, bis n weniger als 1 ist; 3. Drucken Sie im Schleifenkörper den Wert von n aus; 4. Am Ende der Schleife subtrahieren Sie N um 1, um den nächsten kleineren gegenseitigen gegenseitigen gegenseitigen gegenseitig auszugeben.
