Heim > Backend-Entwicklung > Python-Tutorial > Wie implementiert man einen Regressionsanalysealgorithmus mit Python?

Wie implementiert man einen Regressionsanalysealgorithmus mit Python?

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
Freigeben: 2023-09-19 12:15:16
Original
1025 Leute haben es durchsucht

Wie implementiert man einen Regressionsanalysealgorithmus mit Python?

Wie implementiert man einen Regressionsanalysealgorithmus mit Python?

Die Regressionsanalyse ist eine häufig verwendete statistische Methode, mit der die Beziehung zwischen Variablen untersucht und der Wert einer Variablen vorhergesagt wird. Im Bereich des maschinellen Lernens und der Datenanalyse wird häufig die Regressionsanalyse eingesetzt. Python verfügt als beliebte Programmiersprache über leistungsstarke Bibliotheken und Tools für die Analyse großer Datenmengen und maschinelles Lernen. In diesem Artikel wird erläutert, wie Sie mit Python Regressionsanalysealgorithmen implementieren, und es werden spezifische Codebeispiele bereitgestellt.

  1. Notwendige Bibliotheken und Datensätze importieren

Bevor wir Python zur Implementierung der Regressionsanalyse verwenden, müssen wir einige notwendige Bibliotheken und Datensätze importieren. Hier sind einige häufig verwendete Bibliotheken und Datensätze:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
Nach dem Login kopieren
  1. Daten laden und untersuchen

Bei der Regressionsanalyse müssen wir Daten laden und untersuchen. Laden Sie zunächst die Daten mithilfe der Pandas-Bibliothek in einen DataFrame:

dataset = pd.read_csv('data.csv')
Nach dem Login kopieren

Anschließend können wir einige Pandas- und Matplotlib-Funktionen verwenden, um die grundlegenden Informationen und die Verteilung der Daten zu untersuchen:

print(dataset.head())  # 查看前几行数据
print(dataset.describe())  # 描述性统计信息
plt.scatter(dataset['x'], dataset['y'])
plt.xlabel('x')
plt.ylabel('y')
plt.show()
Nach dem Login kopieren
  1. Bereiten Sie die Daten vor

Bevor Sie die Regression durchführen Für die Analyse müssen wir die Daten vorbereiten. Zuerst trennen wir die unabhängigen und abhängigen Variablen und konvertieren sie in geeignete Numpy-Arrays:

X = dataset['x'].values.reshape(-1, 1)
y = dataset['y'].values
Nach dem Login kopieren

Dann teilen wir den Datensatz in Trainings- und Testsätze auf:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Nach dem Login kopieren
  1. Erstellen Sie ein Regressionsmodell

Weiter. Als nächstes verwenden wir die lineare Regressionsalgorithmus zum Erstellen eines Regressionsmodells. Wir können die LinearRegression-Klasse der scikit-learn-Bibliothek verwenden, um eine lineare Regression zu implementieren:

regressor = linear_model.LinearRegression()
regressor.fit(X_train, y_train)
Nach dem Login kopieren
  1. Modellbewertung

Nach dem Erstellen des Regressionsmodells müssen wir die Leistung des Modells bewerten. Verwenden Sie die Daten im Testsatz, um Vorhersagen zu treffen und den mittleren quadratischen Fehler und das Bestimmtheitsmaß des Modells zu berechnen:

y_pred = regressor.predict(X_test)
print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred))
print("Coefficient of determination: %.2f" % r2_score(y_test, y_pred))
Nach dem Login kopieren
  1. Visualisierung der Regressionslinie

Schließlich können wir die Matplotlib-Bibliothek verwenden, um die Regressionslinie und das zu zeichnen Streudiagramm auf dem Testsatz, um die Anpassung des Modells visuell darzustellen:

plt.scatter(X_test, y_test)
plt.plot(X_test, y_pred, color='red', linewidth=2)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
Nach dem Login kopieren

Das Obige sind die kurzen Schritte und Codebeispiele für die Verwendung von Python zur Implementierung des Regressionsanalysealgorithmus. Durch diese Schritte können wir die Daten laden, die Daten vorbereiten, das Regressionsmodell erstellen und die Leistung des Modells bewerten. Mithilfe des linearen Regressionsalgorithmus können wir den Wert einer Variablen vorhersagen und die Anpassung des Modells mithilfe der Matplotlib-Bibliothek visualisieren. Ich hoffe, dass dieser Artikel für Leser hilfreich ist, die Regressionsanalysealgorithmen erlernen.

Das obige ist der detaillierte Inhalt vonWie implementiert man einen Regressionsanalysealgorithmus mit Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage