


Wie schreibe ich einen PCA-Hauptkomponentenanalysealgorithmus in Python?
Wie schreibe ich einen PCA-Hauptkomponentenanalysealgorithmus in Python?
PCA (Hauptkomponentenanalyse) ist ein häufig verwendeter unbeaufsichtigter Lernalgorithmus, der dazu dient, die Dimensionalität von Daten zu reduzieren, um Daten besser zu verstehen und zu analysieren. In diesem Artikel lernen wir, wie man den PCA-Hauptkomponentenanalysealgorithmus mit Python schreibt und stellen spezifische Codebeispiele bereit.
Die Schritte der PCA sind wie folgt:
- Standardisieren Sie die Daten: Setzen Sie den Mittelwert jedes Merkmals der Daten auf Null und passen Sie die Varianz an denselben Bereich an, um sicherzustellen, dass jedes Merkmal den gleichen Einfluss auf die Ergebnisse hat.
- Kovarianzmatrix berechnen: Die Kovarianzmatrix misst die Korrelation zwischen Merkmalen. Berechnen Sie die Kovarianzmatrix anhand der normalisierten Daten.
- Eigenwerte und Eigenvektoren berechnen: Durch Durchführung der Eigenwertzerlegung der Kovarianzmatrix können Eigenwerte und entsprechende Eigenvektoren erhalten werden.
- Wählen Sie die Hauptkomponente aus: Wählen Sie die Hauptkomponente entsprechend der Größe des Eigenwerts aus. Die Hauptkomponente ist der Eigenvektor der Kovarianzmatrix.
- Daten transformieren: Transformieren Sie die Daten mithilfe ausgewählter Hauptkomponenten in einen neuen niedrigdimensionalen Raum.
Codebeispiel:
import numpy as np def pca(X, k): # 1. 标准化数据 X_normalized = (X - np.mean(X, axis=0)) / np.std(X, axis=0) # 2. 计算协方差矩阵 covariance_matrix = np.cov(X_normalized.T) # 3. 计算特征值和特征向量 eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix) # 4. 选择主成分 eig_indices = np.argsort(eigenvalues)[::-1] # 根据特征值的大小对特征向量进行排序 top_k_eig_indices = eig_indices[:k] # 选择前k个特征值对应的特征向量 top_k_eigenvectors = eigenvectors[:, top_k_eig_indices] # 5. 转换数据 transformed_data = np.dot(X_normalized, top_k_eigenvectors) return transformed_data # 示例数据 X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) # 使用PCA降低维度到1 k = 1 transformed_data = pca(X, k) print(transformed_data)
Im obigen Code normalisieren wir zunächst die Daten durch np.mean
und np.std
. Verwenden Sie dann np.cov
, um die Kovarianzmatrix zu berechnen. Als nächstes führen Sie mit np.linalg.eig
eine Eigenwertzerlegung der Kovarianzmatrix durch, um Eigenwerte und Eigenvektoren zu erhalten. Wir sortieren nach der Größe der Eigenwerte und wählen die Eigenvektoren aus, die den ersten k Eigenwerten entsprechen. Abschließend multiplizieren wir die normalisierten Daten mit dem ausgewählten Merkmalsvektor, um die transformierten Daten zu erhalten. np.mean
和np.std
将数据标准化。然后,使用np.cov
计算协方差矩阵。接下来,使用np.linalg.eig
对协方差矩阵进行特征值分解,得到特征值和特征向量。我们根据特征值的大小进行排序,选择前k个特征值对应的特征向量。最后,我们将标准化后的数据与选择的特征向量相乘,得到转换后的数据。
在示例数据中,我们使用一个简单的2维数据作为示例。最后,我们将维度降低到1维,打印输出转换后的数据。
运行上述代码,输出结果如下:
[[-1.41421356] [-0.70710678] [ 0.70710678] [ 1.41421356]]
这个结果显示数据已经被成功地转换到了1维空间。
通过这个示例,你可以学习到如何使用Python编写PCA主成分分析算法,并使用np.mean
、np.std
、np.cov
和np.linalg.eig
np.mean
, np.std
, np verwenden .cov
und np.linalg.eig
sowie andere NumPy-Funktionen werden zur Durchführung von Berechnungen verwendet. Ich hoffe, dieser Artikel kann Ihnen helfen, die Prinzipien und die Implementierung des PCA-Algorithmus besser zu verstehen und ihn bei Ihren Datenanalyse- und maschinellen Lernaufgaben anzuwenden. 🎜Das obige ist der detaillierte Inhalt vonWie schreibe ich einen PCA-Hauptkomponentenanalysealgorithmus in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Behauptungen in Python sind ein nützliches Werkzeug für Programmierer zum Debuggen ihres Codes. Es wird verwendet, um zu überprüfen, ob der interne Status des Programms den Erwartungen entspricht, und um einen Assertionsfehler (AssertionError) auszulösen, wenn diese Bedingungen falsch sind. Während des Entwicklungsprozesses werden beim Testen und Debuggen Assertionen verwendet, um zu überprüfen, ob der Status des Codes mit den erwarteten Ergebnissen übereinstimmt. In diesem Artikel werden die Ursachen, Lösungen und die korrekte Verwendung von Zusicherungen in Ihrem Code erläutert. Ursache des Assertion-Fehlers. Assertion-Fehler bestanden

Die geschichtete Stichprobentechnik in Python ist eine häufig verwendete Datenerfassungsmethode in der Statistik. Sie kann einen Teil der Stichproben aus dem Datensatz zur Analyse auswählen, um auf die Eigenschaften des gesamten Datensatzes zu schließen. Im Zeitalter von Big Data sind die Datenmengen riesig und die Verwendung der gesamten Stichprobe für die Analyse ist sowohl zeitaufwändig als auch wirtschaftlich unpraktisch. Daher kann die Wahl einer geeigneten Stichprobenmethode die Effizienz der Datenanalyse verbessern. In diesem Artikel werden hauptsächlich geschichtete Stichprobentechniken in Python vorgestellt. Was ist eine geschichtete Stichprobe? Bei der Probenahme handelt es sich um eine geschichtete Probenahme

So verwenden Sie Python zum Schreiben und Ausführen von Skripten unter Linux. Im Linux-Betriebssystem können wir Python zum Schreiben und Ausführen verschiedener Skripte verwenden. Python ist eine prägnante und leistungsstarke Programmiersprache, die eine Fülle von Bibliotheken und Tools bereitstellt, um die Skripterstellung einfacher und effizienter zu machen. Im Folgenden stellen wir die grundlegenden Schritte zur Verwendung von Python zum Schreiben und Ausführen von Skripten unter Linux vor und stellen einige spezifische Codebeispiele bereit, die Ihnen helfen, es besser zu verstehen und zu verwenden. Installieren Sie Python

Überblick über die Entwicklung eines Schwachstellenscanners mit Python In der heutigen Umgebung zunehmender Sicherheitsbedrohungen im Internet sind Schwachstellenscanner zu einem wichtigen Werkzeug zum Schutz der Netzwerksicherheit geworden. Python ist eine beliebte Programmiersprache, die prägnant, leicht lesbar und leistungsstark ist und sich für die Entwicklung verschiedener praktischer Tools eignet. In diesem Artikel erfahren Sie, wie Sie mit Python einen Schwachstellenscanner entwickeln, der Ihr Netzwerk in Echtzeit schützt. Schritt 1: Scanziele festlegen Bevor Sie einen Schwachstellenscanner entwickeln, müssen Sie festlegen, welche Ziele Sie scannen möchten. Dies kann Ihr eigenes Netzwerk sein oder alles, was Sie testen dürfen

So schreiben Sie mit C# einen Breitensuchalgorithmus: Die Breitensuche (BFS) ist ein häufig verwendeter Graphsuchalgorithmus, der zum Durchlaufen eines Graphen oder Baums entsprechend der Breite verwendet wird. In diesem Artikel untersuchen wir, wie man mit C# einen Breitensuchalgorithmus schreibt, und stellen konkrete Codebeispiele bereit. Algorithmusprinzip Das Grundprinzip des Breitensuchalgorithmus besteht darin, vom Startpunkt des Algorithmus aus zu beginnen und den Suchbereich Schicht für Schicht zu erweitern, bis das Ziel gefunden oder der gesamte Graph durchquert wird. Die Implementierung erfolgt normalerweise über Warteschlangen.

Verwendung und Codebeispiele der Funktion sqrt() in Python 1. Funktion und Einführung der Funktion sqrt() In der Python-Programmierung ist die Funktion sqrt() eine Funktion im Mathematikmodul und ihre Funktion besteht darin, die Quadratwurzel von zu berechnen eine Zahl. Die Quadratwurzel bedeutet, dass eine mit sich selbst multiplizierte Zahl dem Quadrat der Zahl entspricht, d. h. x*x=n, dann ist x die Quadratwurzel von n. Zur Berechnung der Quadratwurzel kann im Programm die Funktion sqrt() verwendet werden. 2. So verwenden Sie die Funktion sqrt() in Python, sq

Python-Programmierpraxis: Verwendung der Baidu Map API zum Generieren statischer Kartenfunktionen Einführung: In der modernen Gesellschaft sind Karten zu einem unverzichtbaren Bestandteil des Lebens der Menschen geworden. Bei der Arbeit mit Karten benötigen wir häufig eine statische Karte eines bestimmten Bereichs zur Anzeige auf einer Webseite, einer mobilen App oder einem Bericht. In diesem Artikel wird die Verwendung der Programmiersprache Python und der Baidu Map API zum Generieren statischer Karten vorgestellt und relevante Codebeispiele bereitgestellt. 1. Vorbereitungsarbeiten Um die Funktion der Generierung statischer Karten mithilfe der Baidu Map API zu realisieren, I

Python-Programmierung zur Analyse der Koordinatenkonvertierungsfunktion in der Baidu Map API-Dokumentation Einführung: Mit der rasanten Entwicklung des Internets ist die Kartenpositionierungsfunktion zu einem unverzichtbaren Bestandteil des Lebens moderner Menschen geworden. Als einer der beliebtesten Kartendienste in China stellt Baidu Maps eine Reihe von APIs für Entwickler zur Verfügung. In diesem Artikel wird die Python-Programmierung verwendet, um die Koordinatenkonvertierungsfunktion in der Baidu Map API-Dokumentation zu analysieren und entsprechende Codebeispiele zu geben. 1. Einleitung Bei der Entwicklung kommt es manchmal zu Problemen bei der Koordinatenkonvertierung. Baidu-Karte AP
