PHP SOCKET 技术研究_PHP
今天试着写一个 PHP 与 C 语言通过socket通讯的程序,看过PHP手册,发现有好几种方式可以建立socket 客户端.
1、通过 fsockopen() 建立socket连接,然后用 用fputs() 发送消息,用 fgets() 接收消息。
2、通过 socket_create() 建立 socket 连接,然后用 socket_send() or socket_write() 发送消息,用 socket_recv() or socket_read() 发送消息。
很奇怪,我在手册上看到了这样一段话"本扩展模块是实验性的。该模块的行为,包括其函数的名称以及其它任何关于此模块的文档可能会在没有通知的情况下随 PHP 以后的发布而改变。我们提醒您在使用本扩展模块的同时自担风险。" 看来 php4.0 socket通讯还不是完全稳定。
今天我写的客户端要与服务端做两次通讯,我用上面这个方法都写了一个客户端程序,发现当仅仅就一次通讯的时候,也就是PHP客户端发送一次消息,然后接收返回消息,就关闭连接。这两种方法都能正确快速的实现功能,但当做两次通讯时,却有明显的差别,第一种方法第一次通讯特别快就结束了,这个我可以通过服务端的输出看出来,但是第二次通讯要等上好几分钟才能结束,我试了好几次都这样,我不太清楚我的程序哪里出错了,还是这个方式连接就是有问题,但是第二种方法做这两次通讯却很快,正确!完成的非常的。
最后我根据 第二种情况写了一个 class
////////////////ile Description ////////////////////
//Class Name : socket
//Version: V1.0
//Functional Outline: create socket,and send message to server
//Revision history: 2004/12/15 First version created
// Current : 2004/12/15 Liu ongsheng
///////////////////////////////////////////
class socket{
var $socket; //socket 句柄
var $sendflag = ">>>";
var $recvflag = " var $response;
var $debug = 1;
function socket($hostname,$port){
$address = gethostbyname($hostname);
$this->socket = socket_create(AF_INET,SOCK_STREAM,SOL_TCP);
$result = socket_connect($this->socket,$address,$port);
if($this->debug == 1){
if ($result echo "socket_connect() failed.\nReason: ($result) " . socket_strerror($result) . "
";
} else{
echo "connect OK.
";
}
}
}
function sendmsg($msg){
socket_write($this->socket,$msg,strlen($msg));
$result = socket_read($this->socket,100);
$this->response = $result;
if($this->debug == 1){
printf("%s $msg
",$this->sendflag);
printf("%s $result
",$this->recvflag);
}
return $result;
}
function close(){
socket_close($this->socket);
}
}

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Die Nachricht wurde gesendet, aber von der anderen Partei abgelehnt. Dies bedeutet, dass die gesendeten Informationen erfolgreich vom Gerät gesendet wurden, die andere Partei die Nachricht jedoch aus irgendeinem Grund nicht erhalten hat. Genauer gesagt liegt dies in der Regel daran, dass die andere Partei bestimmte Berechtigungen festgelegt oder bestimmte Maßnahmen ergriffen hat, was den normalen Empfang Ihrer Informationen verhindert.

Large-Scale Language Models (LLMs) haben überzeugende Fähigkeiten bei vielen wichtigen Aufgaben bewiesen, darunter das Verständnis natürlicher Sprache, die Sprachgenerierung und das komplexe Denken, und hatten tiefgreifende Auswirkungen auf die Gesellschaft. Diese herausragenden Fähigkeiten erfordern jedoch erhebliche Schulungsressourcen (im linken Bild dargestellt) und lange Inferenzzeiten (im rechten Bild dargestellt). Daher müssen Forscher wirksame technische Mittel entwickeln, um ihre Effizienzprobleme zu lösen. Darüber hinaus wurden, wie auf der rechten Seite der Abbildung zu sehen ist, einige effiziente LLMs (LanguageModels) wie Mistral-7B erfolgreich beim Entwurf und Einsatz von LLMs eingesetzt. Diese effizienten LLMs können den Inferenzspeicher erheblich reduzieren und gleichzeitig eine ähnliche Genauigkeit wie LLaMA1-33B beibehalten

Der Artikel von StableDiffusion3 ist endlich da! Dieses Modell wurde vor zwei Wochen veröffentlicht und verwendet die gleiche DiT-Architektur (DiffusionTransformer) wie Sora. Nach seiner Veröffentlichung sorgte es für großes Aufsehen. Im Vergleich zur Vorgängerversion wurde die Qualität der von StableDiffusion3 generierten Bilder erheblich verbessert. Es unterstützt jetzt Eingabeaufforderungen mit mehreren Themen, und der Textschreibeffekt wurde ebenfalls verbessert, und es werden keine verstümmelten Zeichen mehr angezeigt. StabilityAI wies darauf hin, dass es sich bei StableDiffusion3 um eine Reihe von Modellen mit Parametergrößen von 800 M bis 8 B handelt. Durch diesen Parameterbereich kann das Modell direkt auf vielen tragbaren Geräten ausgeführt werden, wodurch der Einsatz von KI deutlich reduziert wird

Die Trajektorienvorhersage spielt eine wichtige Rolle beim autonomen Fahren. Unter autonomer Fahrtrajektorienvorhersage versteht man die Vorhersage der zukünftigen Fahrtrajektorie des Fahrzeugs durch die Analyse verschiedener Daten während des Fahrvorgangs. Als Kernmodul des autonomen Fahrens ist die Qualität der Trajektorienvorhersage von entscheidender Bedeutung für die nachgelagerte Planungssteuerung. Die Trajektorienvorhersageaufgabe verfügt über einen umfangreichen Technologie-Stack und erfordert Vertrautheit mit der dynamischen/statischen Wahrnehmung des autonomen Fahrens, hochpräzisen Karten, Fahrspurlinien, Fähigkeiten in der neuronalen Netzwerkarchitektur (CNN&GNN&Transformer) usw. Der Einstieg ist sehr schwierig! Viele Fans hoffen, so schnell wie möglich mit der Flugbahnvorhersage beginnen zu können und Fallstricke zu vermeiden. Heute werde ich eine Bestandsaufnahme einiger häufiger Probleme und einführender Lernmethoden für die Flugbahnvorhersage machen! Einführungsbezogenes Wissen 1. Sind die Vorschaupapiere in Ordnung? A: Schauen Sie sich zuerst die Umfrage an, S

In diesem Artikel wird das Problem der genauen Erkennung von Objekten aus verschiedenen Blickwinkeln (z. B. Perspektive und Vogelperspektive) beim autonomen Fahren untersucht, insbesondere wie die Transformation von Merkmalen aus der Perspektive (PV) in den Raum aus der Vogelperspektive (BEV) effektiv ist implementiert über das Modul Visual Transformation (VT). Bestehende Methoden lassen sich grob in zwei Strategien unterteilen: 2D-zu-3D- und 3D-zu-2D-Konvertierung. 2D-zu-3D-Methoden verbessern dichte 2D-Merkmale durch die Vorhersage von Tiefenwahrscheinlichkeiten, aber die inhärente Unsicherheit von Tiefenvorhersagen, insbesondere in entfernten Regionen, kann zu Ungenauigkeiten führen. Während 3D-zu-2D-Methoden normalerweise 3D-Abfragen verwenden, um 2D-Features abzutasten und die Aufmerksamkeitsgewichte der Korrespondenz zwischen 3D- und 2D-Features über einen Transformer zu lernen, erhöht sich die Rechen- und Bereitstellungszeit.

Die Aufgabe der Bild-zu-Video-Generierung (I2V) ist eine Herausforderung im Bereich Computer Vision, die darauf abzielt, statische Bilder in dynamische Videos umzuwandeln. Die Schwierigkeit dieser Aufgabe besteht darin, dynamische Informationen in der zeitlichen Dimension aus einem einzelnen Bild zu extrahieren und zu generieren und dabei die Authentizität und visuelle Kohärenz des Bildinhalts zu wahren. Bestehende I2V-Methoden erfordern häufig komplexe Modellarchitekturen und große Mengen an Trainingsdaten, um dieses Ziel zu erreichen. Kürzlich wurde ein neues Forschungsergebnis „I2V-Adapter: AGeneralImage-to-VideoAdapter for VideoDiffusionModels“ unter der Leitung von Kuaishou veröffentlicht. Diese Forschung stellt eine innovative Bild-zu-Video-Konvertierungsmethode vor und schlägt ein leichtes Adaptermodul vor, d. h.

Diese Arbeit von EfficientSAM wurde mit einer perfekten Bewertung von 5/5/5 in CVPR2024 aufgenommen! Der Autor teilte das Ergebnis in den sozialen Medien mit, wie im Bild unten gezeigt: Der Gewinner des LeCun Turing Award hat dieses Werk ebenfalls wärmstens empfohlen! In einer aktuellen Forschung haben Meta-Forscher eine neue, verbesserte Methode vorgeschlagen, nämlich das Mask Image Pre-Training (SAMI) unter Verwendung von SAM. Diese Methode kombiniert MAE-Vortrainingstechnologie und SAM-Modelle, um hochwertige vorab trainierte ViT-Encoder zu erhalten. Durch SAMI versuchen Forscher, die Leistung und Effizienz des Modells zu verbessern und bessere Lösungen für Sehaufgaben bereitzustellen. Der Vorschlag dieser Methode bringt neue Ideen und Möglichkeiten zur weiteren Erforschung und Entwicklung der Bereiche Computer Vision und Deep Learning. durch die Kombination verschiedener

Die Videoproduktion schreitet auf Hochtouren voran und Pika hat einen großartigen General begrüßt: den Google-Forscher Omer Bar-Tal, der als Gründungswissenschaftler von Pika fungiert. Vor einem Monat veröffentlichte Google als Co-Autor das Videogenerierungsmodell Lumiere, und der Effekt war erstaunlich. Damals sagten Internetnutzer: Google beteiligt sich am Kampf um die Videogenerierung und es gibt eine weitere gute Show, die man sich ansehen kann. Einige Leute aus der Branche, darunter der CEO von StabilityAI und ehemalige Kollegen von Google, sandten ihren Segen. Lumieres erstes Werk, Omer Bar-Tal, der gerade seinen Master-Abschluss gemacht hat, schloss 2021 sein Studium an der Fakultät für Mathematik und Informatik der Universität Tel Aviv ab und ging dann zum Weizmann Institute of Science, um einen Master-Abschluss in Computer zu machen Wissenschaft mit Schwerpunkt auf der Forschung im Bereich der Bild- und Videosynthese. Die Ergebnisse seiner Abschlussarbeiten wurden mehrfach veröffentlicht
