Schnellstart: Statistische Diagramme mit Python zeichnen
Titel: Schnellstart: Verwenden von Python zum Zeichnen statistischer Diagramme mit spezifischen Codebeispielen
Artikel:
Das Zeichnen statistischer Diagramme ist eine der wichtigen Verbindungen in der Datenanalyse und Datenvisualisierung. Als leistungsstarke und leicht zu erlernende Programmiersprache bietet Python eine Vielzahl von Zeichenbibliotheken wie Matplotlib und Seaborn. In diesem Artikel wird anhand spezifischer Codebeispiele erläutert, wie Sie mit Python verschiedene gängige statistische Diagramme zeichnen können.
- Liniendiagramm
Ein Liniendiagramm ist eines der am häufigsten verwendeten statistischen Diagramme, das zur Darstellung von Trends über Zeit, Kategorien oder andere Variablen verwendet wird. Hier ist ein Beispielcode zum Zeichnen eines Liniendiagramms mithilfe der Matplotlib-Bibliothek:
import matplotlib.pyplot as plt # 准备数据 x = [1, 2, 3, 4, 5] y = [10, 15, 7, 12, 9] # 绘制折线图 plt.plot(x, y) # 添加标题和标签 plt.title("折线图示例") plt.xlabel("X轴") plt.ylabel("Y轴") # 显示图表 plt.show()
- Balkendiagramm
Balkendiagramm wird häufig verwendet, um die Datengröße zwischen verschiedenen Kategorien zu vergleichen. Im Folgenden finden Sie einen Beispielcode zum Zeichnen eines Histogramms mithilfe der Matplotlib-Bibliothek:
import matplotlib.pyplot as plt # 准备数据 x = ["A", "B", "C", "D", "E"] y = [10, 15, 7, 12, 9] # 绘制柱状图 plt.bar(x, y) # 添加标题和标签 plt.title("柱状图示例") plt.xlabel("类别") plt.ylabel("数值") # 显示图表 plt.show()
- Kreisdiagramm
Kreisdiagramme werden häufig zur Darstellung von Datenproportionen und proportionalen Beziehungen verwendet. Unten finden Sie einen Beispielcode zum Zeichnen eines Kreisdiagramms mithilfe der Matplotlib-Bibliothek:
import matplotlib.pyplot as plt # 准备数据 labels = ["A", "B", "C", "D"] sizes = [30, 20, 25, 15] # 绘制饼图 plt.pie(sizes, labels=labels, autopct='%1.1f%%') # 添加标题 plt.title("饼图示例") # 显示图表 plt.show()
- Streudiagramm
Streudiagramme werden verwendet, um die Beziehung zwischen zwei Variablen darzustellen. Das Folgende ist ein Beispielcode zum Zeichnen eines Streudiagramms mithilfe der Seaborn-Bibliothek:
import seaborn as sns # 准备数据 x = [1, 2, 3, 4, 5] y = [10, 15, 7, 12, 9] # 绘制散点图 sns.scatterplot(x, y) # 添加标题和标签 plt.title("散点图示例") plt.xlabel("X轴") plt.ylabel("Y轴") # 显示图表 plt.show()
Der obige Beispielcode deckt nur gängige statistische Diagrammtypen ab und stellt nur einen kleinen Teil seiner Funktionen dar. Die Zeichenbibliothek von Python bietet weitere Optionen und Funktionen, die je nach Bedarf weiter untersucht und geübt werden können.
Zusammenfassung:
In diesem Artikel wird anhand spezifischer Codebeispiele erläutert, wie Sie mit Python statistische Diagramme zeichnen. Durch das Erlernen dieser grundlegenden Fähigkeiten und Methoden können Sie verschiedene Arten von statistischen Diagrammen entsprechend Ihren eigenen Anforderungen frei zeichnen, um Daten besser anzuzeigen und zu analysieren. Ich hoffe, dieser Artikel hilft Ihnen beim Erlernen statistischer Diagramme!
Das obige ist der detaillierte Inhalt vonSchnellstart: Statistische Diagramme mit Python zeichnen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.

VS -Code kann unter Windows 8 ausgeführt werden, aber die Erfahrung ist möglicherweise nicht großartig. Stellen Sie zunächst sicher, dass das System auf den neuesten Patch aktualisiert wurde, und laden Sie dann das VS -Code -Installationspaket herunter, das der Systemarchitektur entspricht und sie wie aufgefordert installiert. Beachten Sie nach der Installation, dass einige Erweiterungen möglicherweise mit Windows 8 nicht kompatibel sind und nach alternativen Erweiterungen suchen oder neuere Windows -Systeme in einer virtuellen Maschine verwenden müssen. Installieren Sie die erforderlichen Erweiterungen, um zu überprüfen, ob sie ordnungsgemäß funktionieren. Obwohl VS -Code unter Windows 8 möglich ist, wird empfohlen, auf ein neueres Windows -System zu upgraden, um eine bessere Entwicklungserfahrung und Sicherheit zu erzielen.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
