


Wie verwende ich Python für NLP, um Datums- und Uhrzeitangaben in PDF-Dateien zu identifizieren und zu verarbeiten?
Wie verwende ich Python für NLP, um Datum und Uhrzeit in PDF-Dateien zu identifizieren und zu verarbeiten?
NLP (Natural Language Processing) ist ein weit verbreitetes Forschungsgebiet, das viele Aufgaben umfasst, darunter Textklassifizierung, Erkennung benannter Entitäten, Stimmungsanalyse usw. Im NLP ist die Verarbeitung von Datums- und Uhrzeitangaben eine wichtige Aufgabe, da viele Textdaten Informationen über Datums- und Uhrzeitangaben enthalten. In diesem Artikel wird erläutert, wie Sie Python für NLP verwenden, um Datums- und Uhrzeitangaben in PDF-Dateien zu identifizieren und zu verarbeiten, und es werden spezifische Codebeispiele bereitgestellt.
Bevor wir beginnen, müssen wir einige notwendige Python-Bibliotheken installieren. Zu den Hauptbibliotheken, die wir verwenden werden, gehören pdfminer.six zum Parsen von PDF-Dateien und die NLTK-Bibliothek (Natural Language Toolkit) für NLP-Aufgaben. Wenn Sie diese Bibliotheken noch nicht installiert haben, können Sie sie mit dem folgenden Befehl installieren:
pip install pdfminer.six pip install nltk
Nach der Installation dieser Bibliotheken können wir mit dem Schreiben von Code beginnen. Zuerst müssen wir die erforderlichen Bibliotheken importieren:
import re import nltk from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfpage import PDFPage from io import StringIO
Als nächstes müssen wir eine Funktion definieren, um die PDF-Datei zu analysieren und den darin enthaltenen Textinhalt zu extrahieren:
def extract_text_from_pdf(pdf_path): rsrcmgr = PDFResourceManager() retstr = StringIO() codec = 'utf-8' laparams = LAParams() device = TextConverter(rsrcmgr, retstr, codec=codec, laparams=laparams) fp = open(pdf_path, 'rb') interpreter = PDFPageInterpreter(rsrcmgr, device) password = "" maxpages = 0 caching = True pagenos = set() for page in PDFPage.get_pages(fp, pagenos, maxpages=maxpages, password=password, caching=caching, check_extractable=True): interpreter.process_page(page) text = retstr.getvalue() fp.close() device.close() retstr.close() return text
Im obigen Code verwenden wir die vom pdfminer bereitgestellten Funktionen Bibliothek, um die PDF-Datei zu analysieren und den analysierten Textinhalt in einer Zeichenfolge zu speichern.
Als nächstes müssen wir eine Funktion definieren, um das Muster von Datum und Uhrzeit aus dem Text zu finden und es zu extrahieren:
def extract_dates_and_times(text): sentences = nltk.sent_tokenize(text) dates_and_times = [] for sentence in sentences: words = nltk.word_tokenize(sentence) tagged_words = nltk.pos_tag(words) pattern = r"(?:[0-9]{1,2}(?:st|nd|rd|th)?s+ofs+)?(?:jan(?:uary)?|feb(?:ruary)?|mar(?:ch)?|apr(?:il)?|may|jun(?:e)?|jul(?:y)?|aug(?:ust)?|sep(?:tember)?|oct(?:ober)?|nov(?:ember)?|dec(?:ember)?)(?:s*[0-9]{1,4})?(?:s*(?:a.?d.?|b.?c.?e.?))?|(?:(?:[0-9]+:)?[0-9]{1,2}(?::[0-9]{1,2})?(?:s*(?:a.?m.?|p.?m.?))?)" matches = re.findall(pattern, sentence, flags=re.IGNORECASE) dates_and_times.extend(matches) return dates_and_times
Im obigen Code verwenden wir zunächst die von der nltk-Bibliothek bereitgestellte Funktion sent_tokenize, um den Text in Sätze aufzuteilen , Verwenden Sie dann die Funktion word_tokenize, um jeden Satz in Wörter aufzuteilen. Als Nächstes verwenden wir die pos_tag-Funktion von nltk, um das Wort mit einer Wortart zu markieren, die uns hilft, Datum und Uhrzeit zu identifizieren. Abschließend verwenden wir einen regulären Ausdruck, um das Muster für Datum und Uhrzeit abzugleichen und es in der Ergebnisliste zu speichern.
Schließlich können wir Code schreiben, um die obige Funktion aufzurufen und das extrahierte Datum und die extrahierte Uhrzeit zu verwenden:
pdf_path = "example.pdf" text = extract_text_from_pdf(pdf_path) dates_and_times = extract_dates_and_times(text) print("Dates and times found in the PDF:") for dt in dates_and_times: print(dt)
Im obigen Code gehen wir davon aus, dass der Pfad der PDF-Datei „example.pdf“ ist, und rufen extract_text_from_pdf auf Funktion zum Abrufen des Textinhalts und Aufrufen der Funktion extract_dates_and_times zum Extrahieren von Datum und Uhrzeit. Abschließend drucken wir das extrahierte Datum und die extrahierte Uhrzeit aus.
In tatsächlichen Anwendungen können wir bei Bedarf weitere Verarbeitungen und Analysen durchführen, z. B. die Konvertierung des extrahierten Datums und der Uhrzeit in ein bestimmtes Format oder die Durchführung anderer Folgevorgänge basierend auf Datum und Uhrzeit.
Zusammenfassung:
In diesem Artikel wird erläutert, wie Sie Python für NLP verwenden, um Datums- und Uhrzeitangaben in PDF-Dateien zu identifizieren und zu verarbeiten. Wir verwenden die pdfminer-Bibliothek, um die PDF-Datei zu analysieren, die NLTK-Bibliothek für die NLP-Aufgabe und verwenden dann den Mustervergleich regulärer Ausdrücke, um Datum und Uhrzeit zu extrahieren. Durch das Schreiben entsprechender Codebeispiele können wir Datum und Uhrzeit aus PDF-Dateien extrahieren und eine anschließende Verarbeitung und Analyse durchführen. Diese Technologien und Methoden können in vielen praktischen Szenarien eingesetzt werden, beispielsweise in Bereichen wie der automatischen Dokumentenarchivierung, der Informationsextraktion und der Datenanalyse.
Das obige ist der detaillierte Inhalt vonWie verwende ich Python für NLP, um Datums- und Uhrzeitangaben in PDF-Dateien zu identifizieren und zu verarbeiten?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Die Installation von CentOS-Installationen erfordert die folgenden Schritte: Installieren von Abhängigkeiten wie Entwicklungstools, PCRE-Devel und OpenSSL-Devel. Laden Sie das Nginx -Quellcode -Paket herunter, entpacken Sie es, kompilieren Sie es und installieren Sie es und geben Sie den Installationspfad als/usr/local/nginx an. Erstellen Sie NGINX -Benutzer und Benutzergruppen und setzen Sie Berechtigungen. Ändern Sie die Konfigurationsdatei nginx.conf und konfigurieren Sie den Hörport und den Domänennamen/die IP -Adresse. Starten Sie den Nginx -Dienst. Häufige Fehler müssen beachtet werden, z. B. Abhängigkeitsprobleme, Portkonflikte und Konfigurationsdateifehler. Die Leistungsoptimierung muss entsprechend der spezifischen Situation angepasst werden, z. B. das Einschalten des Cache und die Anpassung der Anzahl der Arbeitsprozesse.
