


Wie man mit Python schöne und leicht lesbare Diagramme zeichnet
Wie man mit Python schöne und leicht lesbare Diagramme zeichnet
Im Bereich der Datenvisualisierung sind Diagramme eine wichtige Möglichkeit, Daten anzuzeigen. Als leistungsstarke und leicht zu erlernende Programmiersprache verfügt Python über eine Fülle von Diagrammbibliotheken wie Matplotlib, Seaborn und Plotly. In diesem Artikel wird erläutert, wie Sie mit Python schöne und leicht lesbare Diagramme zeichnen und spezifische Codebeispiele bereitstellen.
- Notwendige Bibliotheken importieren
Bevor wir beginnen, müssen wir einige notwendige Bibliotheken importieren. Im Folgenden finden Sie Möglichkeiten zum Importieren häufig verwendeter Datenverarbeitungs- und Diagrammzeichnungsbibliotheken.
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px
- Daten vorbereiten
Bevor wir das Diagramm zeichnen, müssen wir die entsprechenden Daten vorbereiten. Sie können Bibliotheken wie NumPy und Pandas verwenden, um Daten zu lesen und die erforderliche Datenverarbeitung durchzuführen.
Das Folgende ist ein Beispiel für den Datenlese- und -verarbeitungsprozess.
# 读取示例数据集 data = pd.read_csv('data.csv') # 数据处理 # ...
- Liniendiagramme zeichnen
Liniendiagramme sind eine gängige Art der Datendarstellung und können zur Darstellung von Trends und Änderungen in Daten verwendet werden. In Python können wir mithilfe der Matplotlib-Bibliothek Liniendiagramme zeichnen.
Das Folgende ist ein Beispielcode zum Zeichnen eines Liniendiagramms mit Matplotlib.
# 绘制线图 plt.plot(data['x'], data['y']) # 添加标题和标签 plt.title('Line Chart') plt.xlabel('X') plt.ylabel('Y') # 显示图表 plt.show()
- Histogramme zeichnen
Histogramme sind eine weitere gängige Art der Datendarstellung und eignen sich zum Vergleich von Daten zwischen verschiedenen Kategorien. In Python können wir Histogramme mit Matplotlib- oder Seaborn-Bibliotheken zeichnen.
Das Folgende ist ein Beispielcode zum Zeichnen eines Histogramms mit Seaborn.
# 绘制柱状图 sns.barplot(x='category', y='value', data=data) # 添加标题和标签 plt.title('Bar Chart') plt.xlabel('Category') plt.ylabel('Value') # 显示图表 plt.show()
- Zeichnen Sie ein Streudiagramm
Ein Streudiagramm kann verwendet werden, um die Beziehung und Verteilung zwischen zwei Variablen darzustellen. In Python können wir Streudiagramme mithilfe der Matplotlib- oder Seaborn-Bibliotheken zeichnen.
Das Folgende ist ein Beispielcode zum Zeichnen eines Streudiagramms mit Plotly.
# 绘制散点图 fig = px.scatter(data, x='x', y='y', color='category') # 显示图表 fig.show()
- Zeichnen Sie einen Boxplot
Der Boxplot ist eine häufig verwendete Methode zur Darstellung der Datenverteilung, mit der Informationen wie der Median, das obere und untere Quartil sowie Ausreißer der Daten angezeigt werden können. In Python können wir Boxplots mithilfe der Seaborn-Bibliothek zeichnen.
Das Folgende ist ein Beispielcode zum Zeichnen eines Boxplots mit Seaborn.
# 绘制箱线图 sns.boxplot(x='category', y='value', data=data) # 添加标题和标签 plt.title('Box Plot') plt.xlabel('Category') plt.ylabel('Value') # 显示图表 plt.show()
Mit den oben genannten Beispielcodes können wir Python verwenden, um schöne und leicht lesbare Diagramme zu zeichnen. Natürlich können wir je nach Bedarf und Datentyp auch andere Diagrammbibliotheken und -methoden nutzen. Die gezeichneten Diagramme helfen uns nicht nur, die Daten besser zu verstehen, sondern bieten auch eine leistungsstarke visuelle Unterstützung, um uns dabei zu helfen, die Kerninformationen der Daten zu vermitteln.
Das obige ist der detaillierte Inhalt vonWie man mit Python schöne und leicht lesbare Diagramme zeichnet. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.
