


ICCV 2023 bekannt gegeben: Beliebte Veröffentlichungen wie ControlNet und SAM wurden ausgezeichnet
Die International Conference on Computer Vision (ICCV) wurde diese Woche in Paris, Frankreich, eröffnet.
Als weltweit führende akademische Konferenz im Bereich Computer Vision findet die ICCV alle zwei Jahre statt.
Die Beliebtheit von ICCV lag schon immer auf Augenhöhe mit CVPR und erreichte immer wieder neue Höchstwerte
Bei der heutigen Eröffnungszeremonie gab ICCV offiziell die diesjährigen Papierdaten bekannt: Insgesamt wurden in diesem Jahr 8068 Einreichungen beim ICCV eingereicht, von denen 2160 angenommen wurden Die Akzeptanzrate liegt bei 26,8 %, was etwas höher ist als die Akzeptanzrate des vorherigen ICCV 2021 von 25,9 % beliebt

Der wichtigste Teil der heutigen Eröffnungsfeier ist zweifellos die Preisverleihung. Als nächstes werden wir nacheinander die Gewinner der besten Arbeit, der Nominierung für die beste Arbeit und der besten Studentenarbeit bekannt geben Die erste Studie wurde von Forschern der University of Toronto durchgeführt Wei, Sotiris Nousias, Rahul Gulve, David B. Lindell, Kiriakos N. Kutulakos

Beliebte Veröffentlichungen wie ControlNet und SAM wurden ausgezeichnet und die ICCV 2023 Paper Awards wurden bekannt gegeben. Dieser Artikel demonstriert experimentell das Potenzial dieses asynchronen Bildgebungsmechanismus: (1) um Szenen abzubilden, die gleichzeitig von Lichtquellen (Glühlampen, Projektoren, mehrfach gepulste Laser) beleuchtet werden, die mit deutlich unterschiedlichen Geschwindigkeiten arbeiten, ohne Synchronisierung, (2) Passives Non-Line-of -Sight-Videoerfassung; (3) Nehmen Sie Ultra-Breitbandvideos auf, die später mit 30 Hz abgespielt werden können, um alltägliche Bewegungen zu zeigen, aber auch eine Milliarde Mal langsamer, um die Ausbreitung des Lichts selbst zu zeigen
Der Inhalt, der es braucht neu geschrieben werden soll: Der zweite Artikel ist das, was wir als ControNet kennen Institution: Stanford University

Die Kernidee von ControlNet besteht darin, der Textbeschreibung einige zusätzliche Bedingungen hinzuzufügen, um das Diffusionsmodell zu steuern (z. B. stabile Diffusion), wodurch die Pose, Tiefe, Bildstruktur und andere Informationen des generierten Bilds besser gesteuert werden können.
Umgeschrieben als: Wir können zusätzliche Bedingungen in Form von Bildern eingeben, damit das Modell Canny-Kantenerkennung, Tiefenerkennung, semantische Segmentierung, Hough-Transformationslinienerkennung, Gesamtverschachtelte Kantenerkennung (HED), Erkennung menschlicher Körperhaltung usw. durchführen kann. Operationen und behalten diese Informationen im resultierenden Bild bei. Mit diesem Modell können wir Strichzeichnungen oder Graffiti direkt in Vollfarbbilder umwandeln und Bilder mit der gleichen Tiefenstruktur erzeugen. Gleichzeitig können wir auch die Generierung von Charakterhänden durch Handschlüsselpunkte optimieren Weitere Informationen finden Sie im ausführlichen Einführungsbericht auf dieser Website:
Die Reduzierung der KI-Dimensionalität trifft menschliche Maler, vinzentinische Diagramme werden in ControlNet eingeführt und Tiefen- und Kanteninformationen sind vollständig wiederverwendbar
Nominierung für die beste Arbeit: SAM
Im April dieses Jahres Meta veröffentlichte einen Artikel mit dem Titel „Separate Everything (SAM)’s AI model, das Masken für Objekte in jedem Bild oder Video generieren kann.“ Diese Technologie schockierte Forscher auf dem Gebiet der Computer Vision und einige nannten sie sogar „Lebenslauf existiert nicht mehr“Jetzt wurde dieser hochkarätige Artikel für den besten Artikel nominiert.
Papieradresse:
https://arxiv.org/abs/2304.02643
CV existiert nicht mehr? Meta veröffentlicht das KI-Modell „Split Everything“, CV könnte den GPT-3-Moment einläuten
Beste studentische Arbeit
Papieradresse:
https://arxiv.org/abs/2306.05422

- Im Bereich Computer Vision gibt es Es gibt zwei Arten von häufig verwendeten Methoden zur Bewegungsschätzung: Verfolgung spärlicher Merkmale und dichter optischer Fluss. Allerdings haben beide Methoden einige Nachteile. Sparse-Feature-Tracking kann nicht die Bewegung aller Pixel modellieren, während ein dichter optischer Fluss keine Bewegungstrajektorien über lange Zeiträume hinweg erfassen kann
OmniMotion ist eine neue, von der Forschung vorgeschlagene Technologie, die kanonische Quasi-3D-Volumina zur Charakterisierung von Videos verwendet. OmniMotion ist in der Lage, jedes Pixel durch eine Bijektion zwischen lokalem Raum und kanonischem Raum zu verfolgen. Diese Darstellungsmethode gewährleistet nicht nur globale Konsistenz und Bewegungsverfolgung auch bei verdeckten Objekten, sondern ist auch in der Lage, beliebige Kombinationen von Kamera- und Objektbewegungen zu modellieren. Experimente haben gezeigt, dass die OmniMotion-Methode hinsichtlich der Leistung deutlich besser ist als die bestehende SOTA-Methode. „Alles verfolgen“-Videoalgorithmus Hier kommen wir

Das obige ist der detaillierte Inhalt vonICCV 2023 bekannt gegeben: Beliebte Veröffentlichungen wie ControlNet und SAM wurden ausgezeichnet. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen





Aber vielleicht kann er den alten Mann im Park nicht besiegen? Die Olympischen Spiele in Paris sind in vollem Gange und Tischtennis hat viel Aufmerksamkeit erregt. Gleichzeitig haben Roboter auch beim Tischtennisspielen neue Durchbrüche erzielt. Gerade hat DeepMind den ersten lernenden Roboteragenten vorgeschlagen, der das Niveau menschlicher Amateurspieler im Tischtennis-Wettkampf erreichen kann. Papieradresse: https://arxiv.org/pdf/2408.03906 Wie gut ist der DeepMind-Roboter beim Tischtennisspielen? Vermutlich auf Augenhöhe mit menschlichen Amateurspielern: Sowohl Vorhand als auch Rückhand: Der Gegner nutzt unterschiedliche Spielstile, und auch der Roboter hält aus: Aufschlagannahme mit unterschiedlichem Spin: Allerdings scheint die Intensität des Spiels nicht so intensiv zu sein wie Der alte Mann im Park. Für Roboter, Tischtennis

Am 21. August fand in Peking die Weltroboterkonferenz 2024 im großen Stil statt. Die Heimrobotermarke „Yuanluobot SenseRobot“ von SenseTime hat ihre gesamte Produktfamilie vorgestellt und kürzlich den Yuanluobot AI-Schachspielroboter – Chess Professional Edition (im Folgenden als „Yuanluobot SenseRobot“ bezeichnet) herausgebracht und ist damit der weltweit erste A-Schachroboter für heim. Als drittes schachspielendes Roboterprodukt von Yuanluobo hat der neue Guoxiang-Roboter eine Vielzahl spezieller technischer Verbesserungen und Innovationen in den Bereichen KI und Maschinenbau erfahren und erstmals die Fähigkeit erkannt, dreidimensionale Schachfiguren aufzunehmen B. durch mechanische Klauen an einem Heimroboter, und führen Sie Mensch-Maschine-Funktionen aus, z. B. Schach spielen, jeder spielt Schach, Überprüfung der Notation usw.

Der Schulstart steht vor der Tür und nicht nur die Schüler, die bald ins neue Semester starten, sollten auf sich selbst aufpassen, sondern auch die großen KI-Modelle. Vor einiger Zeit war Reddit voller Internetnutzer, die sich darüber beschwerten, dass Claude faul werde. „Sein Niveau ist stark gesunken, es kommt oft zu Pausen und sogar die Ausgabe wird sehr kurz. In der ersten Woche der Veröffentlichung konnte es ein komplettes 4-seitiges Dokument auf einmal übersetzen, aber jetzt kann es nicht einmal eine halbe Seite ausgeben.“ !

Auf der World Robot Conference in Peking ist die Präsentation humanoider Roboter zum absoluten Mittelpunkt der Szene geworden. Am Stand von Stardust Intelligent führte der KI-Roboterassistent S1 drei große Darbietungen mit Hackbrett, Kampfkunst und Kalligraphie auf Ein Ausstellungsbereich, der sowohl Literatur als auch Kampfkunst umfasst, zog eine große Anzahl von Fachpublikum und Medien an. Durch das elegante Spiel auf den elastischen Saiten demonstriert der S1 eine feine Bedienung und absolute Kontrolle mit Geschwindigkeit, Kraft und Präzision. CCTV News führte einen Sonderbericht über das Nachahmungslernen und die intelligente Steuerung hinter „Kalligraphie“ durch. Firmengründer Lai Jie erklärte, dass hinter den seidenweichen Bewegungen die Hardware-Seite die beste Kraftkontrolle und die menschenähnlichsten Körperindikatoren (Geschwindigkeit, Belastung) anstrebt. usw.), aber auf der KI-Seite werden die realen Bewegungsdaten von Menschen gesammelt, sodass der Roboter stärker werden kann, wenn er auf eine schwierige Situation stößt, und lernen kann, sich schnell weiterzuentwickeln. Und agil

Bei dieser ACL-Konferenz haben die Teilnehmer viel gewonnen. Die sechstägige ACL2024 findet in Bangkok, Thailand, statt. ACL ist die führende internationale Konferenz im Bereich Computerlinguistik und Verarbeitung natürlicher Sprache. Sie wird von der International Association for Computational Linguistics organisiert und findet jährlich statt. ACL steht seit jeher an erster Stelle, wenn es um akademischen Einfluss im Bereich NLP geht, und ist außerdem eine von der CCF-A empfohlene Konferenz. Die diesjährige ACL-Konferenz ist die 62. und hat mehr als 400 innovative Arbeiten im Bereich NLP eingereicht. Gestern Nachmittag gab die Konferenz den besten Vortrag und weitere Auszeichnungen bekannt. Diesmal gibt es 7 Best Paper Awards (zwei davon unveröffentlicht), 1 Best Theme Paper Award und 35 Outstanding Paper Awards. Die Konferenz verlieh außerdem drei Resource Paper Awards (ResourceAward) und einen Social Impact Award (

Heute Nachmittag begrüßte Hongmeng Zhixing offiziell neue Marken und neue Autos. Am 6. August veranstaltete Huawei die Hongmeng Smart Xingxing S9 und die Huawei-Konferenz zur Einführung neuer Produkte mit umfassendem Szenario und brachte die Panorama-Smart-Flaggschiff-Limousine Xiangjie S9, das neue M7Pro und Huawei novaFlip, MatePad Pro 12,2 Zoll, das neue MatePad Air und Huawei Bisheng mit Mit vielen neuen Smart-Produkten für alle Szenarien, darunter die Laserdrucker der X1-Serie, FreeBuds6i, WATCHFIT3 und der Smart Screen S5Pro, von Smart Travel über Smart Office bis hin zu Smart Wear baut Huawei weiterhin ein Smart-Ökosystem für alle Szenarien auf, um Verbrauchern ein Smart-Erlebnis zu bieten Internet von allem. Hongmeng Zhixing: Huawei arbeitet mit chinesischen Partnern aus der Automobilindustrie zusammen, um die Modernisierung der Smart-Car-Industrie voranzutreiben

Einleitung zur Konferenz Mit der rasanten Entwicklung von Wissenschaft und Technologie ist künstliche Intelligenz zu einer wichtigen Kraft bei der Förderung des sozialen Fortschritts geworden. In dieser Zeit haben wir das Glück, die Innovation und Anwendung der verteilten künstlichen Intelligenz (DAI) mitzuerleben und daran teilzuhaben. Verteilte Künstliche Intelligenz ist ein wichtiger Zweig des Gebiets der Künstlichen Intelligenz, der in den letzten Jahren immer mehr Aufmerksamkeit erregt hat. Durch die Kombination des leistungsstarken Sprachverständnisses und der Generierungsfähigkeiten großer Modelle sind plötzlich Agenten aufgetaucht, die auf natürlichen Sprachinteraktionen, Wissensbegründung, Aufgabenplanung usw. basieren. AIAgent übernimmt das große Sprachmodell und ist zu einem heißen Thema im aktuellen KI-Kreis geworden. Au

Tiefe Integration von Vision und Roboterlernen. Wenn zwei Roboterhände reibungslos zusammenarbeiten, um Kleidung zu falten, Tee einzuschenken und Schuhe zu packen, gepaart mit dem humanoiden 1X-Roboter NEO, der in letzter Zeit für Schlagzeilen gesorgt hat, haben Sie vielleicht das Gefühl: Wir scheinen in das Zeitalter der Roboter einzutreten. Tatsächlich sind diese seidigen Bewegungen das Produkt fortschrittlicher Robotertechnologie + exquisitem Rahmendesign + multimodaler großer Modelle. Wir wissen, dass nützliche Roboter oft komplexe und exquisite Interaktionen mit der Umgebung erfordern und die Umgebung als Einschränkungen im räumlichen und zeitlichen Bereich dargestellt werden kann. Wenn Sie beispielsweise möchten, dass ein Roboter Tee einschenkt, muss der Roboter zunächst den Griff der Teekanne ergreifen und sie aufrecht halten, ohne den Tee zu verschütten, und ihn dann sanft bewegen, bis die Öffnung der Kanne mit der Öffnung der Tasse übereinstimmt , und neigen Sie dann die Teekanne in einem bestimmten Winkel. Das
