Anwendungen künstlicher Intelligenz in der Fertigung
Auf dem Fertigungsmarkt ist maschinelles Sehen zu einem wichtigen Bestandteil vieler Anwendungen der künstlichen Intelligenz geworden. Mit dem Einzug künstlicher Intelligenz in die Fertigungshallen werden diese Standards noch wichtiger
In zahlreichen Märkten, die Bildverarbeitungsanwendungen vorantreiben, ist die Benutzerfreundlichkeit ein wichtiger Trend. Hochentwickelte Kameras, Sensoren und Verarbeitungstechnologien haben sich zu Plug-and-Play-Lösungen entwickelt. Wir führen den gleichen Ansatz im Bereich der künstlichen Intelligenz in der Fertigung ein. Unser Ziel ist es, KI zu vereinfachen, damit Unternehmen mit der Bereitstellung neuer Technologien beginnen können, um Zeit und Geld zu sparen. Was wir anbieten, ist eine Plattform für künstliche Intelligenz und visionbasierte Inspektions- und Rückverfolgbarkeitsanwendungen, mit denen einzigartige Arbeitsabläufe einfach angepasst werden können, um Fertigungsentscheidungen konsistent, zuverlässig und rückverfolgbar zu treffen
Über künstliche Intelligenz in der Fertigung Was sind einige häufige Missverständnisse über Anwendungen in der Industrie?
Eines der größten Missverständnisse ist, dass es kompliziert ist. Das galt noch vor einigen Jahren, aber in letzter Zeit liegt der Schwerpunkt darauf, KI-Tools einfacher und benutzerfreundlicher zu machen. Unser Standpunkt ist, dass Sie kein Experte sein müssen, um Ihre eigenen KI-Algorithmen oder digitalen Arbeitsabläufe zu entwickeln. Mit benutzerfreundlichen Drag-and-Drop-Entwicklungstools und anpassbaren App-basierten Vorlagen kann jeder seine eigenen KI-basierten Workflows entwickeln. Dies ist ein großer Vorteil für Hersteller, da eine Anbieterbindung sowie doppelte Integrations- und Entwicklungskosten vermieden werden.
Welche Arten von Problemen kann KI lösen?
Machine Vision ist bei Gut/Schlecht-Entscheidungen hervorragend, aber manuell ist es schwierig Programm akzeptable Toleranzen. Im Gegensatz dazu kann künstliche Intelligenz leichter darauf trainiert werden, diese variablen Entscheidungen zu lernen. Das Beispiel, das ich verwendet habe, war die Inspektion von Hartholz. Es ist sehr schwierig, maschinelles Sehen manuell zu programmieren, um natürliche Texturen und Kratzer zu erkennen. Im Vergleich dazu ist es viel einfacher, eine KI anhand einiger guter und schlechter Bilder zu trainieren, damit sie den Unterschied erkennen kann. Grundsätzlich kann KI aufgrund ihrer Lernfähigkeit dabei helfen, subjektive Entscheidungen zu treffen.
Auch in Inspektionsprozessen, die auf menschlicher Entscheidungsfindung basieren, bieten sich große Chancen für KI. KI kann uns dabei helfen, anhand subjektiver Qualitätsentscheidungen die richtigen Entscheidungen zu treffen oder Fehler zu erkennen, wenn sich unsere Aufmerksamkeit zu verschieben beginnt. Wir arbeiten mit einem Autoteilehersteller zusammen, der auf manuelle Inspektion setzt, aber künstliche Intelligenz hinzufügt, um Fehler zu finden, die möglicherweise übersehen wurden, oder um festzustellen, ob Fehler innerhalb der Betriebstoleranzen liegen.
Visuelle Inspektionstechnologie mit künstlicher Intelligenz Helfen Sie Autoteileherstellern, Fehler zu identifizieren und festzustellen, ob Mängel innerhalb akzeptabler Leistungstoleranzen liegen.
Wie nutzen Hersteller heute künstliche Intelligenz? Ein wichtiger Bereich für Hersteller, der künstliche Intelligenz einsetzt, ist die menschliche Entscheidungsunterstützung. Trotz erheblicher Investitionen in die Fertigungsautomatisierung erfordern etwa 70 % der Prozesse in den Vereinigten Staaten immer noch menschliche Entscheidungen. Dies gilt insbesondere für Kleinserien-, Sonder- oder Saisonproduktionen, die zu teuer und komplex sind, als dass eine Investition in eine vollständige Automatisierung möglich wäre.
Umgeschriebener Inhalt: Visuelle Inspektion ist ein Bereich, in dem künstliche Intelligenz Menschen dabei hilft, richtige Entscheidungen zu treffen. Als Teil eines kamerabasierten Systems können visuelle Inspektionsanwendungen Produktunterschiede oder Mängel hervorheben, um Bedienern die Inspektion zu erleichtern. Gleichzeitig ist dies auch ein Bereich, in dem wir die anfängliche Entscheidungsfindung der Bediener im Umgang mit diesen Mängeln nutzen können, um Modelle der künstlichen Intelligenz zu trainieren, um das Problem früherer Missverständnisse zu lösen, die möglicherweise bestanden haben. Indem die Bediener diese anfänglichen Unterschiede akzeptieren oder ablehnen, trainieren sie das KI-Modell effektiv transparent. Nach mehreren Inspektionen beginnt das KI-Modell, dem Betreiber Entscheidungsempfehlungen zu geben.
Wenn der Inspektor einen Fehler feststellt, bevor das Produkt auf den Markt kommt, sammelt der Hersteller auch vollständige Inspektionsaufzeichnungen, einschließlich Produktbilder und Bedieneranweisungen, um eine vollständige Rückverfolgbarkeit manueller Prozesse zu gewährleisten. Wir arbeiten beispielsweise mit einem Elektronikhersteller zusammen, der Teile für hochzuverlässige Anwendungen zusammenbaut, und vollständige End-to-End-Inspektionsschritte und Aufzeichnungen von Bedienerentscheidungen sind für die Rückverfolgbarkeit von entscheidender Bedeutung.
Dica Electronics nutzt die Sichtprüfung als „zweites Augenpaar“, um potenzielle Produktionsfehler zu erkennen, und erfasst gleichzeitig eine vollständige Aufzeichnung von Produktbildern und Bedienernotizen, um die Rückverfolgbarkeit sicherzustellen. Decca Electronics nutzt die Sichtprüfung als „zweites Augenpaar“, um potenzielle Produktionsfehler zu erkennen und gleichzeitig Produktbilder und Bedienernotizen aufzuzeichnen, um die Rückverfolgbarkeit sicherzustellen
Was halten Sie davon, wie Hersteller künstliche Intelligenz einsetzen
?
Es gibt einen großen Hype um KI und Hersteller neigen dazu, Erwartungen auf der Grundlage perfekter Anwendungsfälle aufzubauen. Bald stießen sie auf ein Problem. Ihre Anwendung ist möglicherweise nicht so einfach wie dieser perfekte Anwendungsfall. Es sind viele Anpassungen erforderlich. Ein häufiges Problem besteht einfach darin, die Bilder zu erhalten, die zum Erstellen und Trainieren eines KI-Modells erforderlich sind – insbesondere, wenn Sie ein einzigartiges Produkt in geringer Stückzahl herstellen.
Normalerweise raten wir dazu, den Prozess zunächst zu digitalisieren und dann schrittweise in Richtung Automatisierung überzugehen. Die visuelle Inspektion ist ein guter Ausgangspunkt, bei dem Sie zunächst maschinelles Sehen nutzen, um Fehler zu erkennen, und dann KI-basierte Entscheidungsunterstützung hinzufügen, um eine konsistente Entscheidungsfindung über Schichten oder verschiedene Arbeitsstationen hinweg zu ermöglichen. Wenn Sie Ihren ersten fehleranfälligen Prozess digitalisieren, erfassen Sie Daten, die Ihnen bei Ihren nächsten automatisierten Entscheidungen helfen können. In der Regel geht es dabei um die Nachverfolgbarkeit visueller Inspektionsentscheidungen oder die Einbindung geführter Arbeits- oder Montageanweisungen in den Inspektionsprozess.
Wählen Sie insgesamt einen fehleranfälligen Prozess und sehen Sie, wie Sie mithilfe von Digitalisierung und KI Zeit und Geld sparen können. Wir arbeiten mit vielen Herstellern zusammen, die Pilotprojekte rund um den ersten störenden Defekt oder Prozess gestartet haben, sich mit der Technologie vertraut gemacht haben und nun auf verschiedene Arbeitsstationen oder Produktionslinien skalieren.
Was ist das größte Hindernis für den Einsatz künstlicher Intelligenz in der Fertigung?
Dies ist ein großes Problem, das oft übersehen wird. Vergessen Sie nicht die beteiligten Personen.
Selbst bei der Automatisierung sind in manchen Prozessen viele davon betroffen Fälle Manchmal sind immer noch menschliche Entscheidungen erforderlich. Dies könnte so einfach sein, den Bedienern zu erklären, warum ein Prozess automatisiert wird, und die erforderliche Schulung bereitzustellen, damit sie ihr Fachwissen auf neue Weise anwenden können. Bei Roboterschweißanwendungen besteht das Ziel beispielsweise darin, den Menschen von sich wiederholenden, schmutzigen und gefährlichen Aufgaben zu befreien und sich dennoch auf sein Expertenwissen und seine jahrelange Ausbildung zu verlassen, um den Prozess zu überwachen und die Ergebnisse auszuwerten. Ohne angemessene Kommunikation und Schulung werden Menschen die Technologie schnell aufgeben und sich dem Wandel widersetzen. Das sind wir
Was glauben Sie, wie der Einsatz künstlicher Intelligenz in der Fertigung in den nächsten Jahren aussehen wird
Vor nicht allzu langer Zeit? Es gab eine allgemeine Angst vor künstlicher Intelligenz. Diese weit verbreitete Sorge verschwindet jedoch weitgehend. Dies ist darauf zurückzuführen, dass die Technologie der künstlichen Intelligenz einfacher zu nutzen ist und in unserem täglichen Leben immer häufiger vorkommt. Es wundert mich, dass ich mittlerweile viele Entscheidungen einem virtuellen Assistenten auf meinem Smartphone überlasse
Wir sind in der Fertigung am gleichen Punkt. Noch vor wenigen Jahren war KI teuer und komplex und meist auf hochentwickelte Labore beschränkt. Mittlerweile erleichtern Entwicklungstools es Qualitätsmanagern, ihre eigenen KI-gestützten Arbeitsabläufe zu entwerfen und bereitzustellen. Es liegt auch ein größerer Fokus darauf, wie KI-Technologien der menschlichen Belegschaft helfen können, sie von langweiligen, schmutzigen und gefährlichen Aufgaben zu befreien und sie bei der Entscheidungsfindung zu unterstützen Diese Technologien sind für Endbenutzer einfacher zu verwenden. Dies ist unser Hauptaugenmerk: Wir bieten Qualitätsmanagern anpassbare, einfach zu implementierende Lösungen, die es ihnen ermöglichen, Herstellungsfehler und Kosten zu reduzieren.
Das obige ist der detaillierte Inhalt vonAnwendungen künstlicher Intelligenz in der Fertigung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

In der Welt der Front-End-Entwicklung ist VSCode mit seinen leistungsstarken Funktionen und seinem umfangreichen Plug-in-Ökosystem für unzählige Entwickler zum Werkzeug der Wahl geworden. In den letzten Jahren sind mit der rasanten Entwicklung der Technologie der künstlichen Intelligenz KI-Code-Assistenten auf VSCode entstanden, die die Codierungseffizienz der Entwickler erheblich verbessert haben. KI-Code-Assistenten auf VSCode sind wie Pilze nach einem Regen aus dem Boden geschossen und haben die Codierungseffizienz der Entwickler erheblich verbessert. Es nutzt Technologie der künstlichen Intelligenz, um Code intelligent zu analysieren und eine präzise Code-Vervollständigung, automatische Fehlerkorrektur, Grammatikprüfung und andere Funktionen bereitzustellen, wodurch Entwicklerfehler und mühsame manuelle Arbeit während des Codierungsprozesses erheblich reduziert werden. Heute werde ich 12 KI-Code-Assistenten für die Frontend-Entwicklung von VSCode empfehlen, die Sie bei Ihrer Programmierreise unterstützen.
