


Warum die Qualität medizinischer Daten im Zeitalter der künstlichen Intelligenz von entscheidender Bedeutung ist
Eine effektive medizinische Datenanalyse erfordert die Berücksichtigung der Subjektivität der Datenqualität. Die Qualität der Daten wirkt sich direkt auf die Genauigkeit, Zuverlässigkeit und Gültigkeit der aus den Daten gewonnenen Informationen aus. Eine schlechte Datenqualität kann zu falschen Diagnosen, unwirksamen Behandlungen und erhöhten Risiken für Patienten und Anbieter führen. Daher ist es für Gesundheitsmanager, die die Ergebnisse und Leistungen im Gesundheitswesen durch Datenanalysen verbessern möchten, von entscheidender Bedeutung, kritische Datenqualitätsprobleme zu identifizieren und zu lösen Mittel für einen bestimmten Kontext und ein bestimmtes Ziel. Die Datenqualität kann anhand von Dimensionen wie Genauigkeit, Vollständigkeit, Konsistenz, Relevanz und Vollständigkeit beurteilt werden. Je nach Art und Zweck der Datenanalyse können einige Dimensionen wichtiger sein als andere.
Eine wachsende Zahl von Innovationen im Gesundheitswesen ermöglicht es Ärzten, Patienten systematisch besser zu versorgen. Da Ärzte aus den Erfahrungen anderer Ärzte lernen, erkennen wir als Patienten, dass die Gesundheitsversorgung komplex und nicht immer effektiv ist. Einzelne Ärzte lernen aus der Behandlung von Patienten, aber diese Informationen werden von anderen Ärzten selten weiter zur Verbesserung der Versorgung genutzt.
Wenn das Gesundheitswesen jedoch keine routinemäßige Lernbetreuung übernimmt, auf welche Daten werden sich Ärzte dann verlassen, um wichtige Entscheidungen zu treffen?
Der Hauptansatz im Gesundheitswesen besteht darin, klare Methoden anzuwenden. Über einen Zeitraum von mehreren Jahren werden randomisierte Studien durchgeführt, die Ergebnisse analysiert und schrittweise in die klinische Praxis übernommen. Während die Sicherheit und Wirksamkeit von Behandlungen bestimmt werden kann, gibt es nicht genügend Informationen, um verschiedene Behandlungsoptionen zu vergleichen und herauszufinden, welche Behandlung am besten wirkt. Kurz gesagt: Die in solchen Studien erfassten Informationen sind zwar gut, aber sie reichen nicht aus. Das Gesundheitswesen verfügt nicht über genügend Daten, um Behandlungen individuell anzupassen oder schnell zu lernen.
Datenqualität im Gesundheitswesen
Datenqualität im Gesundheitswesen hilft bei der Bestimmung der Zahlungskosten für medizinische Leistungen. Angesichts der zunehmenden Beliebtheit von künstlicher Intelligenz (KI), Datenanalyse, Internet of Medical Things (IoMT) und Datenvisualisierungstools ist die Bedeutung der Datenqualität im Gesundheitswesen nicht zu unterschätzen.
In der Gesundheitsbranche bezieht sich Datenqualität auf die folgenden Merkmale der von Gesundheitsorganisationen gesammelten Daten:
Genauigkeit: Daten gelten nur dann als korrekt, wenn jede detaillierte Eingabe der Informationen korrekt ist und korrekt dargestellt wird. Integrität: Integrität bedeutet, dass alle vom Anbieter gesammelten Informationen protokolliert werden und leicht zugänglich sind. Relevanz: Der Relevanzfaktor ist erfüllt, wenn die erhobenen Daten sowohl im medizinischen Umfeld als auch für medizinische Zwecke verwendet werden.- Legalität: Zeigt, dass die Datenerhebung, -verarbeitung, -speicherung und -nutzung allen gesetzlichen Anforderungen und Standards entspricht.
- Konsistenz: Daten können nur dann als konsistent angesehen werden, wenn sie ständig aktualisiert werden und den Gesundheitszustand des Patienten sowie medizinische Eingriffe widerspiegeln.
- Zugänglichkeit: Barrierefreiheitsstandards werden erfüllt, wenn medizinisches Personal vollen Zugriff auf die Details hat, die es benötigt, und diese zur Erfüllung seiner Aufgaben nutzen kann.
- Die Qualität der aus verschiedenen Lösungen gesammelten Daten kann sich auf den Entscheidungsprozess sowohl auf individueller als auch auf globaler Ebene auswirken. Wenn den gesammelten Daten eines der oben genannten Merkmale fehlt oder sie von schlechter Qualität sind, kann die Verwendung solcher fehlerhaften Daten negative Folgen für Patienten, Krankenhäuser und Forscher haben.
- Technologie und Innovation im Gesundheitswesen
- Das Gesundheitswesen als Branche verändert sich Start Lernen aus der Praxis der Krankenpflege. Während die Infrastruktur schon immer vorhanden war, hat die jüngste Konvergenz von Daten – Technologien wie elektronische Gesundheitsakten, künstliche Intelligenz und Rechenleistung – ein Umfeld geschaffen, in dem lernende Gesundheitssysteme realisiert und antizipiert werden können.
Das Gesundheitswesen kann aus der täglichen Pflege gewonnenes Wissen in Daten umwandeln. Dieses Wissen kann uns außerdem dabei helfen, die einzigartigen Eigenschaften jeder Person besser zu verstehen. Es hilft zu erkennen, wie sich einzigartige Merkmale auf die Wirksamkeit verfügbarer Behandlungsoptionen auswirken und dem Einzelnen eine maßgeschneiderte Pflege bieten.
Im Gesundheitssektor werden IT-Lösungen mit unglaublicher Geschwindigkeit angenommen. Dies hat zur Entstehung vieler sich ständig ändernder Trends geführt und zu kontinuierlichen Fortschritten und Verbesserungen geführt. Allerdings können diese Trends Auswirkungen auf das Datenqualitätsmanagement haben
Aus schlechten Daten die falschen Lehren zu ziehen, ist jedoch nicht nur ein Problem, sondern ein ernstes Problem, das Aufmerksamkeit verdient. Auf der Grundlage dieser Empfehlungen trifft die Industrie ihre Entscheidungen. Dies könnte den Patienten ernsthaften Schaden zufügen und ihr Vertrauen in die Gültigkeit der Beweise erschüttern.
Die Lektion hier ist klar: Wenn das Gesundheitswesen von der Routineversorgung lernen will, muss es die Patienten schützen, indem es sicherstellt, dass die Datenqualität hoch genug ist, um Empfehlungen zu erklären.
Neue IT-Lösungen, die bei der Erfassung und Verarbeitung hochwertiger medizinischer Daten helfen und erhebliche Fortschritte im medizinischen Datenmanagement erzielen. Die Kombination von Erkenntnissen und Verantwortung trägt zum Schutz der Patienten bei. Dabei können sie Datenqualitätsstandards und reale Beweise definieren, die für ihre Verwendung ausreichend sind. Diese Standards können wichtige Entscheidungsträger, darunter Ärzte, Versicherer und Aufsichtsbehörden, dazu ermutigen, zu entscheiden, ob reale Beweise vertrauenswürdig genug sind, um Standardverfahren im Gesundheitswesen zu beeinflussen
Der Betrieb mit hochwertigen Daten kann die Gesundheitsversorgung und die Vorhersagefähigkeiten des Patienten verbessern Vermeiden Sie Situationen, die zu schlechten Ergebnissen für den Patienten führen können. Gleichzeitig trägt dies auch zur Verbesserung des Krankenhausmanagements und des Personalmanagements bei. Die Qualität der Datenstandards wird darüber hinaus dabei helfen, Genauigkeit, Vollständigkeit und Rückverfolgbarkeit zu messen
Zusammenfassung
Im aktuellen lernenden Gesundheitssystem orientieren sich nur wenige Behandlungsentscheidungen an realen Erkenntnissen. Jede Behandlungsentscheidung wird von der bisherigen Praxis beeinflusst. Es können erhebliche Risiken bestehen, wenn nicht strikt auf Genauigkeit, Vollständigkeit und Nachvollziehbarkeit geachtet wird. Nicht alle Unternehmen, die Gesundheitsevidenz generieren, verwenden hochwertige Daten oder messen die Datenqualität. Sich auf evidenzbasierte Daten von geringer Qualität zu verlassen, kann katastrophale Folgen haben
Aber es gibt Hoffnung auf eine glänzende Zukunft im Gesundheitswesen.
Medizinische Einrichtungen setzen moderne Technologien ein, um aus den zuverlässigsten medizinischen Daten zu lernen. Allerdings muss in diesem Fall die Datenqualität entscheidend sein.
Für die Gesundheitsbranche ist es wichtiger denn je, sich in Richtung eines lernenden Gesundheitssystems zu bewegen. Die Verfügbarkeit elektronischer Gesundheitsdaten, Rechenleistung und künstliche Intelligenz werden Innovationen hervorbringen. Für Fachkräfte im Gesundheitswesen ist es jedoch ebenso wichtig zu lernen, zwischen qualitativ hochwertigen Daten und Daten geringer Qualität zu unterscheiden und sicherzustellen, dass sie daraus die richtigen Lehren ziehen
Das obige ist der detaillierte Inhalt vonWarum die Qualität medizinischer Daten im Zeitalter der künstlichen Intelligenz von entscheidender Bedeutung ist. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Laut Nachrichten dieser Website vom 1. August hat SK Hynix heute (1. August) einen Blogbeitrag veröffentlicht, in dem es ankündigt, dass es am Global Semiconductor Memory Summit FMS2024 teilnehmen wird, der vom 6. bis 8. August in Santa Clara, Kalifornien, USA, stattfindet viele neue Technologien Generation Produkt. Einführung des Future Memory and Storage Summit (FutureMemoryandStorage), früher Flash Memory Summit (FlashMemorySummit), hauptsächlich für NAND-Anbieter, im Zusammenhang mit der zunehmenden Aufmerksamkeit für die Technologie der künstlichen Intelligenz wurde dieses Jahr in Future Memory and Storage Summit (FutureMemoryandStorage) umbenannt Laden Sie DRAM- und Speicheranbieter und viele weitere Akteure ein. Neues Produkt SK Hynix wurde letztes Jahr auf den Markt gebracht

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S
