


Feature-Screening-Probleme in Algorithmen für maschinelles Lernen
Feature-Screening-Problem im maschinellen Lernalgorithmus
Im Bereich des maschinellen Lernens ist das Feature-Screening ein sehr wichtiges Problem. Sein Ziel besteht darin, aus einer großen Anzahl von Features die nützlichsten Features für die Vorhersageaufgabe auszuwählen. Durch das Feature-Screening können Abmessungen reduziert, die Rechenkomplexität verringert und die Genauigkeit und Interpretierbarkeit des Modells verbessert werden.
Es gibt viele Methoden zum Feature-Screening. Im Folgenden stellen wir drei häufig verwendete Feature-Screening-Methoden vor und geben entsprechende Codebeispiele.
- Varianzschwellenwert
Varianzschwellenwert ist eine einfache und intuitive Methode zur Merkmalsauswahl, die die Bedeutung des Merkmals für die Zielvariable bewertet, indem die Varianz des Merkmals berechnet wird. Je kleiner die Varianz, desto geringer ist der Einfluss des Merkmals auf die Zielvariable und kann für eine Entfernung in Betracht gezogen werden.
from sklearn.feature_selection import VarianceThreshold # 创建特征矩阵 X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3], [1, 2, 3, 5]] # 创建方差筛选器 selector = VarianceThreshold(threshold=0.8) # 应用筛选器 X_new = selector.fit_transform(X) print(X_new)
Im obigen Codebeispiel haben wir zuerst eine 4x4-Feature-Matrix X und dann einen Varianzfilter erstellt. Indem wir den Schwellenwertparameter auf 0,8 setzen, behalten wir nur Features mit einer Varianz von mehr als 0,8 bei. Abschließend wenden wir den Filter an und drucken die gefilterte Feature-Matrix X_new.
- Korrelationsbasierte Merkmalsauswahl
Die Korrelationskoeffizienten-Screeningmethode ist eine Merkmalsauswahlmethode, die auf der Korrelation zwischen Merkmalen und Zielvariablen basiert. Es verwendet den Pearson-Korrelationskoeffizienten, um die lineare Korrelation zwischen Merkmalen und Zielvariablen zu messen. Je größer der Absolutwert des Korrelationskoeffizienten ist, desto stärker ist die Korrelation zwischen dem Merkmal und der Zielvariablen und kann für die Beibehaltung berücksichtigt werden.
import pandas as pd from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_regression # 创建特征矩阵和目标变量 X = pd.DataFrame([[1, -1, 2], [2, 0, 0], [0, 1, -1], [0, 2, 3]]) y = pd.Series([1, 2, 3, 4]) # 创建相关系数筛选器 selector = SelectKBest(score_func=f_regression, k=2) # 应用筛选器 X_new = selector.fit_transform(X, y) print(X_new)
Im obigen Codebeispiel haben wir zunächst eine 3x3-Feature-Matrix X und eine Zielvariable y mit 4 Werten erstellt. Anschließend wurde ein Korrelationskoeffizientenfilter erstellt, indem der Parameter „score_func“ auf „f_regression“ gesetzt wurde. Dies bedeutet, dass die Funktion „f_regression“ verwendet wird, um den Korrelationskoeffizienten zwischen dem Merkmal und der Zielvariablen zu berechnen. Abschließend wenden wir den Filter an und drucken die gefilterte Feature-Matrix X_new.
- Modellbasierte Funktionsauswahl
Die modellbasierte Screening-Methode bewertet die Bedeutung von Funktionen durch Training eines überwachten Lernmodells und wählt die Funktionen aus, die für die Zielvariable am hilfreichsten sind. Zu den häufig verwendeten Modellen gehören Entscheidungsbäume, Zufallswälder und Support-Vektor-Maschinen.
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel # 创建特征矩阵和目标变量 X = [[0.87, -0.15, 0.67, 1.52], [0.50, -0.12, -0.23, 0.31], [0.14, 1.03, -2.08, -0.06], [-0.68, -0.64, 1.62, -0.36]] y = [0, 1, 0, 1] # 创建随机森林分类器 clf = RandomForestClassifier() # 创建基于模型的筛选器 selector = SelectFromModel(clf) # 应用筛选器 X_new = selector.fit_transform(X, y) print(X_new)
Im obigen Codebeispiel haben wir zunächst eine 4x4-Feature-Matrix X und eine Zielvariable y erstellt, die 4 Klassifizierungsbezeichnungen enthält. Anschließend wurde ein Random-Forest-Klassifikator und ein modellbasierter Filter erstellt. Abschließend wenden wir den Filter an und drucken die gefilterte Feature-Matrix X_new.
Feature-Screening ist ein wichtiges Thema bei maschinellen Lernalgorithmen. Durch rationales Auswählen und Screening von Features kann die Genauigkeit und Interpretierbarkeit des Modells verbessert werden. Die obigen Codebeispiele stellen Codebeispiele für drei häufig verwendete Feature-Screening-Methoden dar: Varianz-Screening-Methode, Korrelationskoeffizienten-Screening-Methode und modellbasierte Screening-Methode. Wir hoffen, den Lesern eine Referenz zum Verständnis und zur Anwendung des Feature-Screenings bereitzustellen.
Das obige ist der detaillierte Inhalt vonFeature-Screening-Probleme in Algorithmen für maschinelles Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen





In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.

01Ausblicksübersicht Derzeit ist es schwierig, ein angemessenes Gleichgewicht zwischen Detektionseffizienz und Detektionsergebnissen zu erreichen. Wir haben einen verbesserten YOLOv5-Algorithmus zur Zielerkennung in hochauflösenden optischen Fernerkundungsbildern entwickelt, der mehrschichtige Merkmalspyramiden, Multierkennungskopfstrategien und hybride Aufmerksamkeitsmodule verwendet, um die Wirkung des Zielerkennungsnetzwerks in optischen Fernerkundungsbildern zu verbessern. Laut SIMD-Datensatz ist der mAP des neuen Algorithmus 2,2 % besser als YOLOv5 und 8,48 % besser als YOLOX, wodurch ein besseres Gleichgewicht zwischen Erkennungsergebnissen und Geschwindigkeit erreicht wird. 02 Hintergrund und Motivation Mit der rasanten Entwicklung der Fernerkundungstechnologie wurden hochauflösende optische Fernerkundungsbilder verwendet, um viele Objekte auf der Erdoberfläche zu beschreiben, darunter Flugzeuge, Autos, Gebäude usw. Objekterkennung bei der Interpretation von Fernerkundungsbildern

In C++ umfasst die Implementierung von Algorithmen für maschinelles Lernen: Lineare Regression: Wird zur Vorhersage kontinuierlicher Variablen verwendet. Zu den Schritten gehören das Laden von Daten, das Berechnen von Gewichtungen und Verzerrungen, das Aktualisieren von Parametern und die Vorhersage. Logistische Regression: Wird zur Vorhersage diskreter Variablen verwendet. Der Prozess ähnelt der linearen Regression, verwendet jedoch die Sigmoidfunktion zur Vorhersage. Support Vector Machine: Ein leistungsstarker Klassifizierungs- und Regressionsalgorithmus, der die Berechnung von Support-Vektoren und die Vorhersage von Beschriftungen umfasst.

1. Hintergrund des Baus der 58-Portrait-Plattform Zunächst möchte ich Ihnen den Hintergrund des Baus der 58-Portrait-Plattform mitteilen. 1. Das traditionelle Denken der traditionellen Profiling-Plattform reicht nicht mehr aus. Der Aufbau einer Benutzer-Profiling-Plattform basiert auf Data-Warehouse-Modellierungsfunktionen, um Daten aus mehreren Geschäftsbereichen zu integrieren, um genaue Benutzerporträts zu erstellen Und schließlich muss es über Datenplattformfunktionen verfügen, um Benutzerprofildaten effizient zu speichern, abzufragen und zu teilen sowie Profildienste bereitzustellen. Der Hauptunterschied zwischen einer selbst erstellten Business-Profiling-Plattform und einer Middle-Office-Profiling-Plattform besteht darin, dass die selbst erstellte Profiling-Plattform einen einzelnen Geschäftsbereich bedient und bei Bedarf angepasst werden kann. Die Mid-Office-Plattform bedient mehrere Geschäftsbereiche und ist komplex Modellierung und bietet allgemeinere Funktionen. 2.58 Benutzerporträts vom Hintergrund der Porträtkonstruktion im Mittelbahnsteig 58
