Heim Backend-Entwicklung C#.Net-Tutorial Häufige Probleme mit gleichzeitigen Sammlungen und Thread-Sicherheit in C#

Häufige Probleme mit gleichzeitigen Sammlungen und Thread-Sicherheit in C#

Oct 09, 2023 pm 10:49 PM
集合 并发 线程安全

Häufige Probleme mit gleichzeitigen Sammlungen und Thread-Sicherheit in C#

Häufige Probleme mit gleichzeitigen Sammlungen und Thread-Sicherheit in C#

Bei der C#-Programmierung ist die Handhabung gleichzeitiger Vorgänge eine sehr häufige Anforderung. Thread-Sicherheitsprobleme treten auf, wenn mehrere Threads gleichzeitig auf dieselben Daten zugreifen und diese ändern. Um dieses Problem zu lösen, bietet C# einige gleichzeitige Erfassungs- und Thread-Sicherheitsmechanismen. In diesem Artikel werden gängige gleichzeitige Sammlungen in C# und der Umgang mit Thread-Sicherheitsproblemen vorgestellt und spezifische Codebeispiele gegeben.

  1. Concurrent Collection

1.1 ConcurrentDictionary

ConcurrentDictionary ist eine häufig verwendete gleichzeitige Wörterbuchsammlung in C#, die es mehreren Threads ermöglicht, verschiedene Schlüssel-Wert-Paare gleichzeitig zu lesen und zu schreiben, und einen Mechanismus zur automatischen Verarbeitung der Thread-Synchronisierung bereitstellt . Hier ist ein Beispiel für die Verwendung von ConcurrentDictionary:

ConcurrentDictionary<string, int> concurrentDict = new ConcurrentDictionary<string, int>();

// 添加键值对
concurrentDict.TryAdd("key1", 1);
concurrentDict.TryAdd("key2", 2);

// 更新值
concurrentDict.TryUpdate("key1", 3, 1);

// 删除键值对
int value;
concurrentDict.TryRemove("key2", out value);
Nach dem Login kopieren

1.2 ConcurrentQueue

ConcurrentQueue ist eine threadsichere Warteschlangensammlung in C#, die es mehreren Threads ermöglicht, Elemente am Ende der Warteschlange hinzuzufügen und Elemente am Anfang der Warteschlange abzurufen und zu löschen zur gleichen Zeit. Hier ist ein Beispiel für die Verwendung von ConcurrentQueue:

ConcurrentQueue<int> concurrentQueue = new ConcurrentQueue<int>();

// 入队
concurrentQueue.Enqueue(1);
concurrentQueue.Enqueue(2);

// 出队
int result;
if(concurrentQueue.TryDequeue(out result))
{
    // 处理出队的元素
}
Nach dem Login kopieren

1.3 ConcurrentBag

ConcurrentBag ist eine threadsichere ungeordnete Sammlung in C#, die es mehreren Threads ermöglicht, Elemente gleichzeitig hinzuzufügen und zu entfernen. Das Folgende ist ein Beispiel für die Verwendung von ConcurrentBag:

ConcurrentBag<int> concurrentBag = new ConcurrentBag<int>();

// 添加元素
concurrentBag.Add(1);
concurrentBag.Add(2);

// 移除元素
int result;
if(concurrentBag.TryTake(out result))
{
    // 处理移除的元素
}
Nach dem Login kopieren
  1. Thread-Sicherheitsprobleme

2.1 Race-Bedingung

Race-Bedingung bezieht sich auf die Unsicherheit des Ergebnisses, die durch die Reihenfolge des Zugriffs mehrerer Threads auf gemeinsam genutzte Ressourcen verursacht wird. Um Race Conditions zu lösen, kann ein Sperrmechanismus (Lock) verwendet werden, um den gegenseitigen Ausschluss des Multithread-Zugriffs auf gemeinsam genutzte Ressourcen sicherzustellen. Das Folgende ist ein Beispiel für die Verwendung von Sperren zur Lösung von Rennbedingungen:

class Counter
{
    private int count;

    public void Increment()
    {
        lock (this)
        {
            count++;
        }
    }

    public int GetCount()
    {
        lock (this)
        {
            return count;
        }
    }
}
Nach dem Login kopieren

2.2 Deadlock

Deadlock bezieht sich auf eine Situation, in der mehrere Threads darauf warten, dass einander Ressourcen freigibt, was dazu führt, dass das Programm die Ausführung nicht fortsetzen kann. Um Deadlocks zu vermeiden, können Sie Sperren in derselben Reihenfolge erwerben oder eine try-finally-Anweisung verwenden, um die normale Freigabe von Ressourcen sicherzustellen. Das Folgende ist ein einfaches Deadlock-Beispiel:

class Deadlock
{
    private static object lock1 = new object();
    private static object lock2 = new object();

    static void Main(string[] args)
    {
        Thread thread1 = new Thread(() => {
            lock (lock1)
            {
                Thread.Sleep(1000); // 为了让另一个线程有机会获取lock2
                lock (lock2)
                {
                    // do something
                }
            }
        });

        Thread thread2 = new Thread(() => {
            lock (lock2)
            {
                Thread.Sleep(1000); // 为了让另一个线程有机会获取lock1
                lock (lock1)
                {
                    // do something
                }
            }
        });

        thread1.Start();
        thread2.Start();
    }
}
Nach dem Login kopieren

Das Obige ist eine Einführung in häufige gleichzeitige Sammlungen und Thread-Sicherheitsprobleme in C# sowie spezifische Codebeispiele. Bei der gleichzeitigen Programmierung müssen wir diese Mechanismen und Probleme verstehen und geeignete Lösungen auswählen, um die Thread-Sicherheit zu gewährleisten. Durch die korrekte Verwendung gleichzeitiger Sammlungen und die Vermeidung von Thread-Sicherheitsproblemen können wir die Leistung und Zuverlässigkeit unserer Programme verbessern.

Das obige ist der detaillierte Inhalt vonHäufige Probleme mit gleichzeitigen Sammlungen und Thread-Sicherheit in C#. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Die Beziehung zwischen C++-Funktionsparameterübergabemethoden und Thread-Sicherheit Die Beziehung zwischen C++-Funktionsparameterübergabemethoden und Thread-Sicherheit Apr 12, 2024 pm 12:09 PM

Methoden zur Übergabe von Funktionsparametern und Thread-Sicherheit: Wertübergabe: Erstellen Sie eine Kopie des Parameters, ohne den ursprünglichen Wert zu beeinträchtigen, der normalerweise threadsicher ist. Übergabe als Referenz: Übergabe der Adresse, wodurch die Änderung des ursprünglichen Werts ermöglicht wird, normalerweise nicht threadsicher. Zeigerübergabe: Die Übergabe eines Zeigers auf eine Adresse ähnelt der Übergabe per Referenz und ist normalerweise nicht threadsicher. In Multithread-Programmen sollten Referenz- und Zeigerübergaben mit Vorsicht verwendet werden und es sollten Maßnahmen ergriffen werden, um Datenwettläufe zu verhindern.

Wie kann die Thread-Sicherheit flüchtiger Variablen in Java-Funktionen sichergestellt werden? Wie kann die Thread-Sicherheit flüchtiger Variablen in Java-Funktionen sichergestellt werden? May 04, 2024 am 10:15 AM

Methoden zur Gewährleistung der Thread-Sicherheit flüchtiger Variablen in Java: Sichtbarkeit: Stellen Sie sicher, dass Änderungen an flüchtigen Variablen durch einen Thread für andere Threads sofort sichtbar sind. Atomarität: Stellen Sie sicher, dass bestimmte Vorgänge an flüchtigen Variablen (z. B. Schreiben, Lesen und Vergleichsaustausch) unteilbar sind und nicht durch andere Threads unterbrochen werden.

Parallelitätskontrolle und Thread-Sicherheit im Java-Sammlungsframework Parallelitätskontrolle und Thread-Sicherheit im Java-Sammlungsframework Apr 12, 2024 pm 06:21 PM

Das Java-Sammlungsframework verwaltet die Parallelität durch threadsichere Sammlungen und Mechanismen zur Parallelitätskontrolle. Thread-sichere Sammlungen (wie CopyOnWriteArrayList) garantieren Datenkonsistenz, während nicht-threadsichere Sammlungen (wie ArrayList) eine externe Synchronisierung erfordern. Java bietet Mechanismen wie Sperren, atomare Operationen, ConcurrentHashMap und CopyOnWriteArrayList, um die Parallelität zu steuern und so die Datenintegrität und -konsistenz in einer Multithread-Umgebung sicherzustellen.

Wie können Parallelität und Multithreading von Java-Funktionen die Leistung verbessern? Wie können Parallelität und Multithreading von Java-Funktionen die Leistung verbessern? Apr 26, 2024 pm 04:15 PM

Parallelitäts- und Multithreading-Techniken mithilfe von Java-Funktionen können die Anwendungsleistung verbessern, einschließlich der folgenden Schritte: Parallelitäts- und Multithreading-Konzepte verstehen. Nutzen Sie die Parallelitäts- und Multithreading-Bibliotheken von Java wie ExecutorService und Callable. Üben Sie Fälle wie die Multithread-Matrixmultiplikation, um die Ausführungszeit erheblich zu verkürzen. Genießen Sie die Vorteile einer erhöhten Reaktionsgeschwindigkeit der Anwendung und einer optimierten Verarbeitungseffizienz durch Parallelität und Multithreading.

Anwendung von Parallelität und Coroutinen im Golang-API-Design Anwendung von Parallelität und Coroutinen im Golang-API-Design May 07, 2024 pm 06:51 PM

Parallelität und Coroutinen werden im GoAPI-Design für Folgendes verwendet: Hochleistungsverarbeitung: Mehrere Anfragen gleichzeitig verarbeiten, um die Leistung zu verbessern. Asynchrone Verarbeitung: Verwenden Sie Coroutinen, um Aufgaben (z. B. das Senden von E-Mails) asynchron zu verarbeiten und den Hauptthread freizugeben. Stream-Verarbeitung: Verwenden Sie Coroutinen, um Datenströme (z. B. Datenbanklesevorgänge) effizient zu verarbeiten.

Wie verarbeitet die Java-Datenbankverbindung Transaktionen und Parallelität? Wie verarbeitet die Java-Datenbankverbindung Transaktionen und Parallelität? Apr 16, 2024 am 11:42 AM

Transaktionen gewährleisten die Integrität der Datenbankdaten, einschließlich Atomizität, Konsistenz, Isolation und Haltbarkeit. JDBC verwendet die Verbindungsschnittstelle, um die Transaktionssteuerung bereitzustellen (setAutoCommit, Commit, Rollback). Parallelitätskontrollmechanismen koordinieren gleichzeitige Vorgänge mithilfe von Sperren oder optimistischer/pessimistischer Parallelitätskontrolle, um eine Transaktionsisolation zu erreichen und Dateninkonsistenzen zu verhindern.

Eine Anleitung zum Unit-Testen gleichzeitiger Go-Funktionen Eine Anleitung zum Unit-Testen gleichzeitiger Go-Funktionen May 03, 2024 am 10:54 AM

Das Testen gleichzeitiger Funktionen in Einheiten ist von entscheidender Bedeutung, da dies dazu beiträgt, ihr korrektes Verhalten in einer gleichzeitigen Umgebung sicherzustellen. Beim Testen gleichzeitiger Funktionen müssen grundlegende Prinzipien wie gegenseitiger Ausschluss, Synchronisation und Isolation berücksichtigt werden. Gleichzeitige Funktionen können Unit-Tests unterzogen werden, indem Rennbedingungen simuliert, getestet und Ergebnisse überprüft werden.

Wie wird Thread-Sicherheit in Java-Funktionen implementiert? Wie wird Thread-Sicherheit in Java-Funktionen implementiert? May 02, 2024 pm 06:09 PM

Zu den Implementierungsmethoden threadsicherer Funktionen in Java gehören: Sperren (Schlüsselwort Synchronized): Verwenden Sie das Schlüsselwort synchronisiert, um die Methode zu ändern und sicherzustellen, dass nur ein Thread die Methode gleichzeitig ausführt, um Datenkonkurrenz zu verhindern. Unveränderliche Objekte: Wenn das Objekt, auf das eine Funktion einwirkt, unveränderlich ist, ist es von Natur aus threadsicher. Atomare Operationen (Atomic-Klasse): Verwenden Sie threadsichere atomare Operationen, die von Atomklassen wie AtomicInteger bereitgestellt werden, um Basistypen zu bearbeiten, und verwenden Sie den zugrunde liegenden Sperrmechanismus, um die Atomizität der Operation sicherzustellen.

See all articles