Heim Technologie-Peripheriegeräte KI „Grundlegende Sicherheitsanforderungen für generative künstliche Intelligenzdienste' ist die öffentliche Einholung von Meinungen. Die Verwendung von Korpora, die personenbezogene Daten enthalten, muss von der entsprechenden Stelle genehmigt werden.

„Grundlegende Sicherheitsanforderungen für generative künstliche Intelligenzdienste' ist die öffentliche Einholung von Meinungen. Die Verwendung von Korpora, die personenbezogene Daten enthalten, muss von der entsprechenden Stelle genehmigt werden.

Oct 12, 2023 pm 05:13 PM
人工智能

„Grundlegende Sicherheitsanforderungen für generative künstliche Intelligenzdienste ist die öffentliche Einholung von Meinungen. Die Verwendung von Korpora, die personenbezogene Daten enthalten, muss von der entsprechenden Stelle genehmigt werden.

Nachrichten vom 12. Oktober: Laut der offiziellen Website des National Information Security Standardization Technical Committee hat das Komitee einen Entwurf des technischen Dokuments „Grundlegende Sicherheitsanforderungen für generative künstliche Intelligenzdienste“ formuliert. Das technische Dokument ist jetzt für Kommentare oder Vorschläge für die Öffentlichkeit zugänglich. Bitte geben Sie bis zum 25. Oktober um 24:00 Uhr Feedback. Die „Anforderungen“ geben die grundlegenden Sicherheitsaspekte generativer künstlicher Intelligenzdienste an , einschließlich Korpussicherheit, Modellsicherheit, Sicherheitsmaßnahmen, Sicherheitsbewertung usw., gelten für Anbieter, die generative künstliche Intelligenzdienste für die Öffentlichkeit in meinem Land bereitstellen, um das Sicherheitsniveau der Dienste zu verbessern, oder für Anbieter, die Sicherheitsbewertungen selbst oder durch andere durchführen Beauftragung Dritter mit der Durchführung von Sicherheitsbewertungen und kann den zuständigen Behörden auch als Referenz für die Bewertung des Sicherheitsniveaus generativer künstlicher Intelligenzdienste dienen.

Einige der Anforderungen für die Organisation dieser Website sind wie folgt: „Grundlegende Sicherheitsanforderungen für generative künstliche Intelligenzdienste ist die öffentliche Einholung von Meinungen. Die Verwendung von Korpora, die personenbezogene Daten enthalten, muss von der entsprechenden Stelle genehmigt werden.

Erstellen Sie eine schwarze Liste von Korpusquellen. Daten aus schwarzen Listenquellen dürfen nicht für Schulungen verwendet werden. Für jede Korpusquelle sollte eine Sicherheitsbewertung durchgeführt werden. Wenn der Inhalt einer einzelnen Korpusquelle mehr als 5 % illegale und schädliche Informationen enthält, sollte sie zur schwarzen Liste hinzugefügt werden.

Bei der Verwendung von Korpussen, die personenbezogene Daten enthalten, sollten Sie die Genehmigung und Zustimmung des entsprechenden Betroffenen der personenbezogenen Daten einholen oder andere Bedingungen für die rechtmäßige Nutzung der personenbezogenen Daten erfüllen
    .
  • Wenn Sie Korpus verwenden, das biometrische Informationen wie Gesichter enthält, holen Sie eine schriftliche Genehmigung der entsprechenden Person für personenbezogene Daten ein oder erfüllen Sie andere Bedingungen für die rechtmäßige Verwendung der biometrischen Informationen.
  • Die Annotatoren sollten selbst beurteilt werden, diejenigen, die die Prüfung bestehen, sollten Annotationsqualifikationen erhalten, und es sollte einen Mechanismus zur regelmäßigen Umschulung und Bewertung sowie einen Mechanismus zur Aussetzung oder Aufhebung der Annotationsqualifikationen bei Bedarf geben.
  • Während des Trainingsprozesses sollte die Sicherheit der generierten Inhalte einer der Hauptüberlegungen für die Bewertung der Qualität der generierten Ergebnisse sein
  • .
  • Wenn Dienste über eine interaktive Schnittstelle bereitgestellt werden, sollten die folgenden Informationen an prominenter Stelle, beispielsweise auf der Homepage der Website, der Öffentlichkeit zugänglich gemacht werden:
  • Der Inhalt, der neu geschrieben werden muss, ist: - Informationen über die Personen, Anlässe, Zwecke usw., für die der Dienst anwendbar ist Umgeschriebener Inhalt: - Serviceinformationen passend für unterschiedliche Personengruppen, Anlässe und Zwecke Nutzungsstatus von Basismodellen Dritter
  • Die Notwendigkeit und Anwendbarkeit der Anwendung generativer künstlicher Intelligenz in verschiedenen Bereichen innerhalb des Serviceumfangs soll vollständig nachgewiesen und dargestellt werden Sicherheit.

Laut früheren Berichten auf dieser Website sind sieben Abteilungen tätig, darunter die Cyberspace Administration of China, die Nationale Entwicklungs- und Reformkommission, das Bildungsministerium, das Ministerium für Wissenschaft und Technologie, das Ministerium für Industrie und Informationstechnologie und das Ministerium für Die öffentliche Sicherheit und die staatliche Radio- und Fernsehverwaltung haben am 10. Juli die „Vorläufigen Maßnahmen für die Verwaltung generativer künstlicher Intelligenzdienste“ erlassen, die am 15. August in Kraft treten.

Die „Maßnahmen“ legen fest, dass niemand die Vorteile von Algorithmen, Daten, Plattformen usw. zur Durchsetzung von Monopolen und unlauterem Wettbewerb nutzen darf, die körperliche und geistige Gesundheit anderer nicht gefährden und die Bildrechte anderer nicht verletzen darf. Reputationsrechte, Ehrenrechte, Datenschutzrechte und persönliche Informationsrechte müssen wirksame Maßnahmen ergreifen, um die Transparenz generativer künstlicher Intelligenzdienste zu verbessern und die Genauigkeit und Zuverlässigkeit der generierten Inhalte zu verbessern.
  • Referenz

Mitteilung zur Einholung von Meinungen zum technischen Dokument „Grundlegende Sicherheitsanforderungen für generative künstliche Intelligenzdienste“ des Information Security Standards Committee (Entwurf für Kommentare)

Das obige ist der detaillierte Inhalt von„Grundlegende Sicherheitsanforderungen für generative künstliche Intelligenzdienste' ist die öffentliche Einholung von Meinungen. Die Verwendung von Korpora, die personenbezogene Daten enthalten, muss von der entsprechenden Stelle genehmigt werden.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Jun 28, 2024 am 03:51 AM

Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Jun 10, 2024 am 11:08 AM

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Sieben coole technische Interviewfragen für GenAI und LLM Sieben coole technische Interviewfragen für GenAI und LLM Jun 07, 2024 am 10:06 AM

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Jul 25, 2024 am 06:42 AM

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen Jul 17, 2024 pm 06:37 PM

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

GlobalFoundries erschließt Märkte wie KI und erwirbt die Galliumnitrid-Technologie von Tagore Technology und zugehörige Teams GlobalFoundries erschließt Märkte wie KI und erwirbt die Galliumnitrid-Technologie von Tagore Technology und zugehörige Teams Jul 15, 2024 pm 12:21 PM

Laut Nachrichten dieser Website vom 5. Juli veröffentlichte GlobalFoundries am 1. Juli dieses Jahres eine Pressemitteilung, in der die Übernahme der Power-Galliumnitrid (GaN)-Technologie und des Portfolios an geistigem Eigentum von Tagore Technology angekündigt wurde, in der Hoffnung, seinen Marktanteil in den Bereichen Automobile und Internet auszubauen Anwendungsbereiche für Rechenzentren mit künstlicher Intelligenz, um höhere Effizienz und bessere Leistung zu erforschen. Da sich Technologien wie generative künstliche Intelligenz (GenerativeAI) in der digitalen Welt weiterentwickeln, ist Galliumnitrid (GaN) zu einer Schlüssellösung für nachhaltiges und effizientes Energiemanagement, insbesondere in Rechenzentren, geworden. Auf dieser Website wurde die offizielle Ankündigung zitiert, dass sich das Ingenieurteam von Tagore Technology im Rahmen dieser Übernahme mit GF zusammenschließen wird, um die Galliumnitrid-Technologie weiterzuentwickeln. G

See all articles