


3D-Composite-Videos in 4K-Qualität frieren in Diashows nicht mehr ein und die neue Methode erhöht die Rendergeschwindigkeit um mehr als das 30-fache
Während 60-Frame-Videos in 4K-Qualität nur von Mitgliedern einiger APPs angesehen werden können, haben KI-Forscher bereits dynamische 3D-Synthesevideos auf 4K-Niveau erreicht, und das Bild ist recht flüssig.
Im wirklichen Leben sind die meisten Videos, mit denen wir in Kontakt kommen, 2D. Wenn wir diese Art von Video ansehen, haben wir keine Möglichkeit, den Betrachtungswinkel zu wählen, z. B. zwischen den Schauspielern hindurchzugehen oder in eine Ecke des Raums zu gehen. Das Aufkommen von VR- und AR-Geräten hat diesen Mangel ausgeglichen. Die von ihnen bereitgestellten 3D-Videos ermöglichen es uns, unsere Perspektive zu ändern und uns sogar nach Belieben zu bewegen, was das Gefühl des Eintauchens erheblich verbessert.
Allerdings war die Synthese einer solchen dynamischen 3D-Szene schon immer eine Schwierigkeit, sowohl im Hinblick auf die Bildqualität als auch auf die Glätte.
Kürzlich haben Forscher der Zhejiang-Universität, der Xiangyan Technology und der Ant Group dieses Problem in Frage gestellt. In einem Artikel mit dem Titel „4K4D: Echtzeit-4D-Ansichtssynthese mit 4K-Auflösung“ schlugen sie eine Punktwolkendarstellungsmethode namens 4K4D vor, die die Rendergeschwindigkeit der hochauflösenden dynamischen 3D-Szenensynthese erheblich verbessert. Insbesondere kann ihre Methode mit einer RTX 4090-GPU mit einer 4K-Auflösung und einer Bildrate von bis zu 80 FPS und mit einer 1080p-Auflösung und einer Bildrate von bis zu 400 FPS rendern. Insgesamt ist es mehr als 30-mal schneller als die vorherige Methode und die Rendering-Qualität erreicht SOTA.
Das Folgende ist die Einleitung des Papiers.
Papierübersicht
- Papierlink: https://arxiv.org/pdf/2310.11448.pdf
- Projektlink: https ://z ju3dv. github .io/4k4d/
Die dynamische Ansichtssynthese zielt darauf ab, dynamische 3D-Szenen aus aufgenommenen Videos zu rekonstruieren und immersive virtuelle Wiedergaben zu erstellen, was ein langfristiges Forschungsproblem im Bereich Computer Vision und Computergrafik darstellt. Der Schlüssel zum Nutzen dieser Technologie liegt in ihrer Fähigkeit, in Echtzeit mit hoher Wiedergabetreue zu rendern, was den Einsatz in VR/AR, Sportübertragungen und der Erfassung künstlerischer Darbietungen ermöglicht. Herkömmliche Ansätze stellen dynamische 3D-Szenen als Sequenzen texturierter Netze dar und verwenden komplexe Hardware, um sie zu rekonstruieren. Daher sind sie normalerweise auf kontrollierte Umgebungen beschränkt.
In letzter Zeit haben implizite neuronale Darstellungen große Erfolge bei der Rekonstruktion dynamischer 3D-Szenen aus RGB-Videos durch differenzierbares Rendering erzielt. Beispielsweise modelliert „Neuronale 3D-Videosynthese aus Multi-View-Video“ die Zielszene als dynamisches Strahlungsfeld, synthetisiert das Bild mithilfe von Volumenrendering und vergleicht und optimiert es mit dem Eingabebild. Trotz der beeindruckenden Ergebnisse der dynamischen Ansichtssynthese benötigen bestehende Methoden aufgrund der teuren Netzwerkauswertung oft Sekunden oder sogar Minuten, um ein Bild mit einer Auflösung von 1080p zu rendern.
Inspiriert durch statische Ansichtssynthesemethoden verbessern einige dynamische Ansichtssynthesemethoden die Rendering-Geschwindigkeit, indem sie die Kosten oder die Anzahl der Netzwerkauswertungen reduzieren. Durch diese Strategien ist MLP Maps in der Lage, dynamische Figuren im Vordergrund mit 41,7 fps darzustellen. Es bestehen jedoch weiterhin Herausforderungen bei der Rendergeschwindigkeit, da die Echtzeitleistung von MLP Maps nur bei der Zusammenstellung von Bildern mit mäßiger Auflösung (384 x 512) erreicht werden kann. Beim Rendern eines Bildes mit 4K-Auflösung verlangsamte es sich auf nur 1,3 FPS.
In diesem Artikel schlagen Forscher eine neue neuronale Darstellung – 4K4D – zum Modellieren und Rendern dynamischer 3D-Szenen vor. Wie in Abbildung 1 dargestellt, übertrifft 4K4D frühere Methoden der dynamischen Ansichtssynthese in puncto Rendering-Geschwindigkeit deutlich und ist gleichzeitig in puncto Rendering-Qualität konkurrenzfähig.
Die Autoren gaben an, dass ihre Kerninnovation in der 4D-Punktwolkendarstellung und dem hybriden Erscheinungsbildmodell liegt. Insbesondere für dynamische Szenen verwenden sie einen Space-Carving-Algorithmus, um eine grobe Punktwolkensequenz zu erhalten und die Position jedes Punkts als lernbaren Vektor zu modellieren. Sie führten außerdem ein 4D-Merkmalsgitter ein, um jedem Punkt Merkmalsvektoren zuzuweisen, und speisten es in das MLP-Netzwerk ein, um den Radius, die Dichte und die sphärischen Harmonischen (SH)-Koeffizienten der Punkte vorherzusagen. 4D-Feature-Netze wenden auf natürliche Weise eine räumliche Regularisierung auf die Punktwolke an, wodurch die Optimierung robuster wird. Basierend auf 4K4D entwickelten Forscher einen differenzierbaren Tiefenpeeling-Algorithmus, der Hardware-Rasterisierung nutzt, um beispiellose Rendering-Geschwindigkeiten zu erreichen.
Forscher fanden heraus, dass das MLP-basierte SH-Modell das Erscheinungsbild dynamischer Szenen nur schwer darstellen kann. Um dieses Problem zu lösen, führten sie außerdem ein Bildmischungsmodell ein, das mit dem SH-Modell kombiniert wird, um das Erscheinungsbild der Szene darzustellen. Ein wichtiger Entwurf besteht darin, das Bildmischungsnetzwerk unabhängig von der Blickrichtung zu machen, sodass es nach dem Training vorberechnet werden kann, um die Rendering-Geschwindigkeit zu verbessern. Als zweischneidiges Schwert macht diese Strategie das Bildmischungsmodell entlang der Betrachtungsrichtung diskret. Dieses Problem kann durch ein kontinuierliches SH-Modell behoben werden. Im Vergleich zum 3D-Gaußschen Splatting, das nur SH-Modelle verwendet, nutzt das von den Forschern vorgeschlagene Hybrid-Erscheinungsmodell die vom Eingabebild erfassten Informationen vollständig aus und verbessert so effektiv die Rendering-Qualität.
Um die Wirksamkeit der neuen Methode zu überprüfen, bewerteten die Forscher 4K4D anhand mehrerer weit verbreiteter dynamischer Mehransichts-Synthesedatensätze mit neuen Ansichten, darunter NHR, ENeRF-Outdoo, DNA-Rendering und Neural3DV. Umfangreiche Experimente haben gezeigt, dass 4K4D nicht nur um Größenordnungen schneller in der Rendering-Geschwindigkeit ist, sondern auch in Bezug auf die Rendering-Qualität deutlich besser als die SOTA-Technologie. Mit einer RTX 4090-GPU erreicht die neue Methode 400 FPS beim DNA-Rendering-Datensatz bei 1080p-Auflösung und 80 FPS beim ENeRF-Outdoor-Datensatz bei 4k-Auflösung.
Einführung in die Methode
Anhand eines Multi-View-Videos, das eine dynamische 3D-Szene aufnimmt, zielt dieser Artikel darauf ab, die Zielszene zu rekonstruieren und eine Ansichtssynthese in Echtzeit durchzuführen. Das Modellarchitekturdiagramm ist in Abbildung 2 dargestellt:
Dann stellt der Artikel das relevante Wissen zur Verwendung von Punktwolken zur Modellierung dynamischer Szenen vor. Sie beginnen aus der Perspektive der 4D-Einbettung, des geometrischen Modells und des Erscheinungsmodells.
4D-Einbettung: In diesem Artikel werden anhand einer groben Punktwolke einer Zielszene neuronale Netze und Merkmalsnetze verwendet, um deren dynamische Geometrie und Erscheinung darzustellen. Insbesondere definiert dieser Artikel zunächst sechs Feature-Ebenen θ_xy, θ_xz, θ_yz, θ_tx, θ_ty und θ_tz und verwendet die K-Planes-Strategie, um diese sechs Ebenen zum Modellieren eines 4D-Feature-Feldes Θ(x, t) zu verwenden:
Geometrisches Modell: Basierend auf der groben Punktwolke wird die dynamische Szenengeometrie durch das Lernen von drei Attributen (Einträgen) für jeden Punkt dargestellt, nämlich Position p ∈ R^3, Radius r ∈ R und Dichte σ ∈ R. Anschließend wird mit Hilfe dieser Punkte die Volumendichte des Punktes x im Raum berechnet. Die Punktposition p wird als optimierbarer Vektor modelliert. Der Radius r und die Dichte σ werden vorhergesagt, indem der Merkmalsvektor f in Gleichung (1) in das MLP-Netzwerk eingespeist wird.
Erscheinungsmodell: Wie in Abbildung 2c gezeigt, verwendet dieser Artikel die Bildmischungstechnologie und das sphärische harmonische Funktionsmodell (SH), um ein hybrides Erscheinungsmodell zu erstellen, wobei die Bildmischungstechnologie das diskrete Ansichtserscheinungsbild c_ibr und das SH-Modell darstellt stellt das kontinuierliche ansichtsabhängige Erscheinungsbild dar. Das Erscheinungsbild von c_sh. Für Punkt mithilfe des Tiefenpeeling-Algorithmus in ein Bild umwandeln.
Die Forscher entwickelten einen benutzerdefinierten Shader, um den aus K Rendering-Durchgängen bestehenden Tiefenpeeling-Algorithmus zu implementieren. Das heißt, für ein bestimmtes Pixel u führte der Forscher eine mehrstufige Verarbeitung durch. Nach K Renderings erhielt das Pixel u schließlich einen Satz von Sortierpunkten {x_k|k = 1, ..., K}.
Basierend auf diesen Punkten {x_k|k = 1, ..., K} wird die Farbe des Pixels u beim Volumenrendering ausgedrückt als:
Während des Trainingsprozesses wird die gerenderte Pixelfarbe C (u) in diesem Artikel mit der realen Pixelfarbe C_gt (u) verglichen und das Modell durchgängig mithilfe der folgenden Verlustfunktion optimiert:
Darüber hinaus gilt dieser Artikel auch für Wahrnehmungsverlust:
und Maskenverlust:
Die endgültige Verlustfunktion ist definiert als:
Experimentieren und Ergebnisse
In diesem Artikel wird die 4K4D-Methode anhand von DNA-Rendering-, ENeRF-Outdoor-, NHR- und Neural3DV-Datensätzen bewertet. Die Ergebnisse von
für den DNA-Rendering-Datensatz sind in Tabelle 1 aufgeführt. Die Ergebnisse zeigen, dass die 4K4D-Rendering-Geschwindigkeit mehr als 30-mal schneller ist als die von ENeRF mit SOTA-Leistung und die Rendering-Qualität besser ist.
Qualitative Ergebnisse des DNA-Rendering-Datensatzes sind in Abbildung 5 dargestellt. KPlanes kann das detaillierte Erscheinungsbild und die Geometrie dynamischer 4D-Szenen nicht wiederherstellen, während andere bildbasierte Methoden ein qualitativ hochwertiges Erscheinungsbild erzeugen. Allerdings führen diese Methoden tendenziell zu unscharfen Ergebnissen um Verdeckungen und Kanten herum, was zu einer verminderten visuellen Qualität führt, wohingegen 4K4D Renderings mit höherer Wiedergabetreue bei über 200 FPS erzeugen kann.
Als nächstes zeigen Experimente die qualitativen und quantitativen Ergebnisse verschiedener Methoden am ENeRFOutdoor-Datensatz. Wie Tabelle 2 zeigt, erzielte 4K4D beim Rendern mit über 140 FPS immer noch deutlich bessere Ergebnisse.
Während andere Methoden wie ENeRF zu unscharfen Ergebnissen führen, enthalten die Rendering-Ergebnisse von IBRNet schwarze Artefakte an den Bildrändern, wie in Abbildung 3 dargestellt .
Tabelle 6 zeigt die Wirksamkeit des differenzierbaren Tiefenpeeling-Algorithmus, wobei 4K4D mehr als siebenmal schneller ist als die CUDA-basierte Methode.
In diesem Artikel wird in Tabelle 7 auch die Rendering-Geschwindigkeit von 4K4D auf unterschiedlicher Hardware (RTX 3060, 3090 und 4090) bei unterschiedlichen Auflösungen angegeben.
Weitere Einzelheiten finden Sie im Originalpapier.
Das obige ist der detaillierte Inhalt von3D-Composite-Videos in 4K-Qualität frieren in Diashows nicht mehr ein und die neue Methode erhöht die Rendergeschwindigkeit um mehr als das 30-fache. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Verarbeiten Sie 7 Millionen Aufzeichnungen effizient und erstellen Sie interaktive Karten mit Geospatial -Technologie. In diesem Artikel wird untersucht, wie über 7 Millionen Datensätze mithilfe von Laravel und MySQL effizient verarbeitet und in interaktive Kartenvisualisierungen umgewandelt werden können. Erstes Herausforderungsprojektanforderungen: Mit 7 Millionen Datensätzen in der MySQL -Datenbank wertvolle Erkenntnisse extrahieren. Viele Menschen erwägen zunächst Programmiersprachen, aber ignorieren die Datenbank selbst: Kann sie den Anforderungen erfüllen? Ist Datenmigration oder strukturelle Anpassung erforderlich? Kann MySQL einer so großen Datenbelastung standhalten? Voranalyse: Schlüsselfilter und Eigenschaften müssen identifiziert werden. Nach der Analyse wurde festgestellt, dass nur wenige Attribute mit der Lösung zusammenhängen. Wir haben die Machbarkeit des Filters überprüft und einige Einschränkungen festgelegt, um die Suche zu optimieren. Kartensuche basierend auf der Stadt

Es gibt viele Gründe, warum MySQL Startup fehlschlägt und durch Überprüfung des Fehlerprotokolls diagnostiziert werden kann. Zu den allgemeinen Ursachen gehören Portkonflikte (prüfen Portbelegung und Änderung der Konfiguration), Berechtigungsprobleme (Überprüfen Sie den Dienst Ausführen von Benutzerberechtigungen), Konfigurationsdateifehler (Überprüfung der Parametereinstellungen), Datenverzeichniskorruption (Wiederherstellung von Daten oder Wiederaufbautabellenraum), InnoDB-Tabellenraumprobleme (prüfen IBDATA1-Dateien), Plug-in-Ladeversagen (Überprüfen Sie Fehlerprotokolle). Wenn Sie Probleme lösen, sollten Sie sie anhand des Fehlerprotokolls analysieren, die Hauptursache des Problems finden und die Gewohnheit entwickeln, Daten regelmäßig zu unterstützen, um Probleme zu verhindern und zu lösen.

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Detaillierte Erläuterung von Datenbanksäureattributen Säureattribute sind eine Reihe von Regeln, um die Zuverlässigkeit und Konsistenz von Datenbanktransaktionen sicherzustellen. Sie definieren, wie Datenbanksysteme Transaktionen umgehen, und sorgen dafür, dass die Datenintegrität und -genauigkeit auch im Falle von Systemabstürzen, Leistungsunterbrechungen oder mehreren Benutzern gleichzeitiger Zugriff. Säureattributübersicht Atomizität: Eine Transaktion wird als unteilbare Einheit angesehen. Jeder Teil schlägt fehl, die gesamte Transaktion wird zurückgerollt und die Datenbank behält keine Änderungen bei. Wenn beispielsweise eine Banküberweisung von einem Konto abgezogen wird, jedoch nicht auf ein anderes erhöht wird, wird der gesamte Betrieb widerrufen. begintransaktion; updateAccountsSetBalance = Balance-100WH

MySQL kann JSON -Daten zurückgeben. Die JSON_EXTRACT -Funktion extrahiert Feldwerte. Über komplexe Abfragen sollten Sie die Where -Klausel verwenden, um JSON -Daten zu filtern, aber auf die Leistungsauswirkungen achten. Die Unterstützung von MySQL für JSON nimmt ständig zu, und es wird empfohlen, auf die neuesten Versionen und Funktionen zu achten.

Remote Senior Backend Engineer Job Vacant Company: Circle Standort: Remote-Büro-Jobtyp: Vollzeitgehalt: 130.000 bis 140.000 US-Dollar Stellenbeschreibung Nehmen Sie an der Forschung und Entwicklung von Mobilfunkanwendungen und öffentlichen API-bezogenen Funktionen, die den gesamten Lebenszyklus der Softwareentwicklung abdecken. Die Hauptaufgaben erledigen die Entwicklungsarbeit unabhängig von RubyonRails und arbeiten mit dem Front-End-Team von React/Redux/Relay zusammen. Erstellen Sie die Kernfunktionalität und -verbesserungen für Webanwendungen und arbeiten Sie eng mit Designer und Führung während des gesamten funktionalen Designprozesses zusammen. Fördern Sie positive Entwicklungsprozesse und priorisieren Sie die Iterationsgeschwindigkeit. Erfordert mehr als 6 Jahre komplexes Backend für Webanwendungen

Laraveleloquent-Modellab Abruf: Das Erhalten von Datenbankdaten Eloquentorm bietet eine prägnante und leicht verständliche Möglichkeit, die Datenbank zu bedienen. In diesem Artikel werden verschiedene eloquente Modellsuchtechniken im Detail eingeführt, um Daten aus der Datenbank effizient zu erhalten. 1. Holen Sie sich alle Aufzeichnungen. Verwenden Sie die Methode All (), um alle Datensätze in der Datenbanktabelle zu erhalten: UseApp \ Models \ post; $ posts = post :: all (); Dies wird eine Sammlung zurückgeben. Sie können mit der Foreach-Schleife oder anderen Sammelmethoden auf Daten zugreifen: foreach ($ postas $ post) {echo $ post->

SQllimit -Klausel: Steuern Sie die Anzahl der Zeilen in Abfrageergebnissen. Die Grenzklausel in SQL wird verwendet, um die Anzahl der von der Abfrage zurückgegebenen Zeilen zu begrenzen. Dies ist sehr nützlich, wenn große Datensätze, paginierte Anzeigen und Testdaten verarbeitet werden und die Abfrageeffizienz effektiv verbessern können. Grundlegende Syntax der Syntax: SelectColumn1, Spalte2, ... Fromtable_Namelimitnumber_of_rows; number_of_rows: Geben Sie die Anzahl der zurückgegebenen Zeilen an. Syntax mit Offset: SelectColumn1, Spalte2, ... Fromtable_NamelimitOffset, Number_of_rows; Offset: Skip überspringen
