


So führen Sie eine Überprüfung der Datenzuverlässigkeit und eine Modellbewertung in Python durch
So führen Sie die Überprüfung der Datenzuverlässigkeit und Modellbewertung in Python durch
Die Überprüfung der Datenzuverlässigkeit und Modellbewertung ist ein sehr wichtiger Schritt bei der Verwendung von Modellen für maschinelles Lernen und Datenwissenschaft. In diesem Artikel wird die Verwendung von Python zur Überprüfung der Datenzuverlässigkeit und Modellbewertung vorgestellt und spezifische Codebeispiele bereitgestellt.
Datenzuverlässigkeitsvalidierung
Datenzuverlässigkeitsvalidierung bezieht sich auf die Überprüfung der Daten, die zur Bestimmung ihrer Qualität und Zuverlässigkeit verwendet werden. Hier sind einige häufig verwendete Methoden zur Überprüfung der Datenzuverlässigkeit:
- Prüfung fehlender Werte
Fehlende Werte beziehen sich auf Situationen, in denen bestimmte Felder oder Merkmale in den Daten leer sind oder fehlen. Um zu überprüfen, ob in den Daten Werte fehlen, können Sie die Funktion isnull() oder isna() in der Pandas-Bibliothek verwenden. Der Beispielcode lautet wie folgt:
import pandas as pd # 读取数据 data = pd.read_csv('data.csv') # 检查缺失值 missing_values = data.isnull().sum() print(missing_values)
- Ausreißererkennung
Ausreißer sind Situationen, in denen ungewöhnliche Beziehungen oder Extremwerte in den Daten vorliegen. Ausreißer können mithilfe von Methoden wie Boxplots, Streudiagrammen oder Z-Score erkannt werden. Das Folgende ist ein Beispielcode für die Ausreißererkennung mithilfe von Boxplot:
import seaborn as sns # 读取数据 data = pd.read_csv('data.csv') # 绘制箱线图 sns.boxplot(x='feature', data=data)
- Datenverteilungsprüfung
Datenverteilung bezieht sich auf die Verteilung von Daten auf verschiedene Features. Die Datenverteilung kann mit Methoden wie Histogrammen und Dichtediagrammen untersucht werden. Im Folgenden finden Sie einen Beispielcode zum Zeichnen eines Datenverteilungsdiagramms mithilfe der Funktion distplot() in der Seaborn-Bibliothek:
import seaborn as sns # 读取数据 data = pd.read_csv('data.csv') # 绘制数据分布图 sns.distplot(data['feature'], kde=False)
Modellbewertung
Modellbewertung ist die Bewertung und der Vergleich der Leistung von Modellen für maschinelles Lernen oder Datenwissenschaft bei deren Verwendung Verfahren. Im Folgenden sind einige häufig verwendete Modellbewertungsindikatoren aufgeführt:
- Genauigkeit (Genauigkeit)
Genauigkeit bezieht sich auf den Anteil korrekt vorhergesagter Stichproben an den vom Modell vorhergesagten Ergebnissen. Die Genauigkeit kann mit der Funktion precision_score() in der Scikit-learn-Bibliothek berechnet werden. Der Beispielcode lautet wie folgt:
from sklearn.metrics import accuracy_score # 真实标签 y_true = [0, 1, 1, 0, 1] # 预测标签 y_pred = [0, 1, 0, 0, 1] # 计算准确率 accuracy = accuracy_score(y_true, y_pred) print(accuracy)
- Präzision und Rückruf
Präzision bezieht sich auf den Anteil der vom Modell als positiv vorhergesagten Proben, die tatsächlich positiv sind, und Rückruf bezieht sich auf den Anteil der vom Modell vorhergesagten tatsächlich positiven Proben Modell Der Anteil positiver Vorhersagen. Präzision und Rückruf können jeweils mit den Funktionen precision_score() und Recall_score() in der Scikit-learn-Bibliothek berechnet werden. Der Beispielcode lautet wie folgt:
from sklearn.metrics import precision_score, recall_score # 真实标签 y_true = [0, 1, 1, 0, 1] # 预测标签 y_pred = [0, 1, 0, 0, 1] # 计算精确率 precision = precision_score(y_true, y_pred) # 计算召回率 recall = recall_score(y_true, y_pred) print(precision, recall)
- F1-Score (F1-Score)
F1-Score ist der gewichtete harmonische Durchschnitt von Präzision und Rückruf, der die Leistung von Präzision und Rückruf umfassend berücksichtigen kann. Der F1-Score kann mit der Funktion f1_score() in der Scikit-learn-Bibliothek berechnet werden. Der Beispielcode lautet wie folgt:
from sklearn.metrics import f1_score # 真实标签 y_true = [0, 1, 1, 0, 1] # 预测标签 y_pred = [0, 1, 0, 0, 1] # 计算F1分数 f1 = f1_score(y_true, y_pred) print(f1)
Zusammenfassend stellt dieser Artikel die Verwendung von Python zur Überprüfung der Datenzuverlässigkeit und Modellbewertung vor und bietet spezifische Codebeispiele. Durch die Überprüfung der Datenzuverlässigkeit und Modellbewertung können wir die Zuverlässigkeit der Datenqualität und Modellleistung sicherstellen und die Anwendungseffekte von maschinellem Lernen und Datenwissenschaft verbessern.
Das obige ist der detaillierte Inhalt vonSo führen Sie eine Überprüfung der Datenzuverlässigkeit und eine Modellbewertung in Python durch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Als Datenprofi müssen Sie große Datenmengen aus verschiedenen Quellen verarbeiten. Dies kann Herausforderungen für das Datenmanagement und die Analyse darstellen. Glücklicherweise können zwei AWS -Dienste helfen: AWS -Kleber und Amazon Athena.

Zu den Schritten zum Starten eines Redis -Servers gehören: Installieren von Redis gemäß dem Betriebssystem. Starten Sie den Redis-Dienst über Redis-Server (Linux/macOS) oder redis-server.exe (Windows). Verwenden Sie den Befehl redis-cli ping (linux/macOS) oder redis-cli.exe ping (Windows), um den Dienststatus zu überprüfen. Verwenden Sie einen Redis-Client wie Redis-Cli, Python oder Node.js, um auf den Server zuzugreifen.

Um eine Warteschlange aus Redis zu lesen, müssen Sie den Warteschlangenname erhalten, die Elemente mit dem Befehl LPOP lesen und die leere Warteschlange verarbeiten. Die spezifischen Schritte sind wie folgt: Holen Sie sich den Warteschlangenname: Nennen Sie ihn mit dem Präfix von "Warteschlange:" wie "Warteschlangen: My-Queue". Verwenden Sie den Befehl LPOP: Wischen Sie das Element aus dem Kopf der Warteschlange aus und geben Sie seinen Wert zurück, z. B. die LPOP-Warteschlange: my-queue. Verarbeitung leerer Warteschlangen: Wenn die Warteschlange leer ist, gibt LPOP NIL zurück, und Sie können überprüfen, ob die Warteschlange existiert, bevor Sie das Element lesen.
