Heim Backend-Entwicklung Python-Tutorial Die Entwicklung eines automatischen Schreibsystems auf Basis von ChatGPT: Python setzt Kreativität frei

Die Entwicklung eines automatischen Schreibsystems auf Basis von ChatGPT: Python setzt Kreativität frei

Oct 24, 2023 am 08:20 AM
chatgpt python编程 Automatisches Schreibsystem

Die Entwicklung eines automatischen Schreibsystems auf Basis von ChatGPT: Python setzt Kreativität frei

Entwickeln Sie ein automatisches Schreibsystem basierend auf ChatGPT: Python setzt Kreativität frei

1. Einführung
Das automatische Schreibsystem ist ein System, das künstliche Intelligenztechnologie nutzt, um Artikel, Gedichte, Geschichten und andere literarische Werke zu generieren. Mit der rasanten Entwicklung der Technologie der künstlichen Intelligenz haben automatische Schreibsysteme auf Basis von ChatGPT in den letzten Jahren große Aufmerksamkeit erregt. In diesem Artikel wird die Entwicklung eines automatischen Schreibsystems auf Basis von ChatGPT vorgestellt und spezifische Codebeispiele gegeben.

2. Übersicht über ChatGPT
ChatGPT ist ein Chat-Agentensystem, das 2020 von OpenAI auf der Grundlage eines generativen Pre-Training-Modells eingeführt wurde. Es verfügt über leistungsstarke Sprachverständnis- und Generierungsfunktionen durch umfangreiches Vortraining für Textdaten. Wir können es auf Basis von ChatGPT verfeinern, sodass es basierend auf Benutzereingaben entsprechenden Text generieren kann.

3. Datenvorbereitung
Um ein automatisches Schreibsystem zu entwickeln, müssen Sie zunächst Trainingsdaten vorbereiten. Als Trainingsdaten können große Mengen an Textdaten wie literarische Werke, Gedichte, Geschichten usw. aus dem Internet gecrawlt werden. Organisieren Sie diese Daten in einer Textdatei, wobei jede Zeile ein Satz oder ein Absatz ist.

4. Modelltraining
Das Codebeispiel für die Verwendung von Python für das Modelltraining lautet wie folgt:

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from torch.utils.data import Dataset, DataLoader

class TextDataset(Dataset):
    def __init__(self, data_path, tokenizer):
        self.tokenizer = tokenizer
        self.data = []
        with open(data_path, 'r', encoding='utf-8') as f:
            for line in f:
                line = line.strip()
                if line:
                    self.data.append(line)

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        text = self.data[index]
        input_ids = self.tokenizer.encode(text, add_special_tokens=True, truncation=True)
        return torch.tensor(input_ids, dtype=torch.long)

def collate_fn(data):
    input_ids = torch.stack([item for item in data])
    attention_mask = input_ids.ne(0).float()
    return {'input_ids': input_ids, 'attention_mask': attention_mask}

data_path = 'train.txt'
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')

dataset = TextDataset(data_path, tokenizer)
dataloader = DataLoader(dataset, batch_size=4, collate_fn=collate_fn, shuffle=True)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)

for epoch in range(5):
    total_loss = 0.0
    for batch in dataloader:
        batch = {k: v.to(device) for k, v in batch.items()}
        outputs = model(**batch, labels=batch['input_ids'])
        loss = outputs.loss
        total_loss += loss.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('Epoch:', epoch, ' Loss:', total_loss)
Nach dem Login kopieren

Während des Trainingsprozesses haben wir GPT2Tokenizer verwendet, um Textdaten in das für das Modell erforderliche Eingabeformat zu konvertieren, und GPT2LMHeadModel für die Feinabstimmung verwendet. Tuning-Training.

5. Textgenerierung
Nachdem das Modelltraining abgeschlossen ist, können wir den folgenden Code verwenden, um Text zu generieren:

def generate_text(model, tokenizer, prompt, max_length=100):
    input_ids = tokenizer.encode(prompt, add_special_tokens=True, truncation=True, return_tensors='pt')
    input_ids = input_ids.to(device)
    output = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
    return generated_text

prompt = '在一个阳光明媚的早晨,小明和小红走进了一家魔法书店,'
generated_text = generate_text(model, tokenizer, prompt)
print(generated_text)
Nach dem Login kopieren

In diesem Code können wir den entsprechenden Text basierend auf der angegebenen Eingabeaufforderung generieren. Der generierte Text kann als kreative Inspirationsquelle für weitere Kreationen und Modifikationen verwendet werden.

6. Optimierung und Verbesserung
Um die Qualität des generierten Textes zu verbessern, können wir die Ergebnisse verbessern, indem wir den Text mehrmals generieren und den besten Absatz auswählen. Sie können die Leistung des Modells auch verbessern, indem Sie die Hyperparameter des Modells anpassen und die Menge an Trainingsdaten erhöhen.

7. Zusammenfassung
Durch die Einleitung dieses Artikels haben wir gelernt, wie man ein automatisches Schreibsystem basierend auf ChatGPT entwickelt. Wir trainieren das ChatGPT-Modell und verwenden dieses Modell zur Textgenerierung. Dieses automatische Schreibsystem kann Autoren Inspiration bieten und ihnen helfen, kreative Probleme während des Schreibprozesses zu lösen. In Zukunft können wir dieses System weiter untersuchen und verbessern, damit es Texte genauer und interessanter generieren kann und den Erstellern mehr Kreativität bietet.

Das obige ist der detaillierte Inhalt vonDie Entwicklung eines automatischen Schreibsystems auf Basis von ChatGPT: Python setzt Kreativität frei. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Mit ChatGPT können kostenlose Benutzer jetzt Bilder mithilfe von DALL-E 3 mit einem Tageslimit generieren Mit ChatGPT können kostenlose Benutzer jetzt Bilder mithilfe von DALL-E 3 mit einem Tageslimit generieren Aug 09, 2024 pm 09:37 PM

DALL-E 3 wurde im September 2023 offiziell als deutlich verbessertes Modell gegenüber seinem Vorgänger eingeführt. Er gilt als einer der bisher besten KI-Bildgeneratoren und ist in der Lage, Bilder mit komplexen Details zu erstellen. Zum Start war es jedoch exklusiv

Die perfekte Kombination aus ChatGPT und Python: Erstellen eines intelligenten Kundenservice-Chatbots Die perfekte Kombination aus ChatGPT und Python: Erstellen eines intelligenten Kundenservice-Chatbots Oct 27, 2023 pm 06:00 PM

Die perfekte Kombination aus ChatGPT und Python: Erstellen eines intelligenten Kundenservice-Chatbots Einführung: Im heutigen Informationszeitalter sind intelligente Kundenservicesysteme zu einem wichtigen Kommunikationsinstrument zwischen Unternehmen und Kunden geworden. Um den Kundenservice zu verbessern, greifen viele Unternehmen auf Chatbots zurück, um Aufgaben wie Kundenberatung und Beantwortung von Fragen zu erledigen. In diesem Artikel stellen wir vor, wie Sie mithilfe des leistungsstarken ChatGPT-Modells und der Python-Sprache von OpenAI einen intelligenten Kundenservice-Chatbot erstellen und verbessern können

So installieren Sie ChatGPT auf einem Mobiltelefon So installieren Sie ChatGPT auf einem Mobiltelefon Mar 05, 2024 pm 02:31 PM

Installationsschritte: 1. Laden Sie die ChatGTP-Software von der offiziellen ChatGTP-Website oder dem mobilen Store herunter. 2. Wählen Sie nach dem Öffnen in der Einstellungsoberfläche die Sprache aus. 3. Wählen Sie in der Spieloberfläche das Mensch-Maschine-Spiel aus 4. Geben Sie nach dem Start Befehle in das Chatfenster ein, um mit der Software zu interagieren.

So entwickeln Sie einen intelligenten Chatbot mit ChatGPT und Java So entwickeln Sie einen intelligenten Chatbot mit ChatGPT und Java Oct 28, 2023 am 08:54 AM

In diesem Artikel stellen wir vor, wie man intelligente Chatbots mit ChatGPT und Java entwickelt, und stellen einige spezifische Codebeispiele bereit. ChatGPT ist die neueste Version des von OpenAI entwickelten Generative Pre-Training Transformer, einer auf neuronalen Netzwerken basierenden Technologie für künstliche Intelligenz, die natürliche Sprache verstehen und menschenähnlichen Text generieren kann. Mit ChatGPT können wir ganz einfach adaptive Chats erstellen

Verwendung der Funktion sqrt() in Python Verwendung der Funktion sqrt() in Python Feb 21, 2024 pm 03:09 PM

Verwendung und Codebeispiele der Funktion sqrt() in Python 1. Funktion und Einführung der Funktion sqrt() In der Python-Programmierung ist die Funktion sqrt() eine Funktion im Mathematikmodul und ihre Funktion besteht darin, die Quadratwurzel von zu berechnen eine Zahl. Die Quadratwurzel bedeutet, dass eine mit sich selbst multiplizierte Zahl dem Quadrat der Zahl entspricht, d. h. x*x=n, dann ist x die Quadratwurzel von n. Zur Berechnung der Quadratwurzel kann im Programm die Funktion sqrt() verwendet werden. 2. So verwenden Sie die Funktion sqrt() in Python, sq

Kann Chatgpt in China verwendet werden? Kann Chatgpt in China verwendet werden? Mar 05, 2024 pm 03:05 PM

chatgpt kann in China verwendet werden, kann jedoch nicht registriert werden. Wenn Benutzer sich registrieren möchten, können sie zur Registrierung eine ausländische Mobiltelefonnummer verwenden. Beachten Sie, dass während des Registrierungsprozesses auf die Netzwerkumgebung umgestellt werden muss eine fremde IP.

So verwenden Sie ChatGPT und Python, um die Funktion zur Erkennung von Benutzerabsichten zu implementieren So verwenden Sie ChatGPT und Python, um die Funktion zur Erkennung von Benutzerabsichten zu implementieren Oct 27, 2023 am 09:04 AM

So verwenden Sie ChatGPT und Python, um die Funktion zur Erkennung von Benutzerabsichten zu implementieren. Einführung: Im heutigen digitalen Zeitalter ist die Technologie der künstlichen Intelligenz in verschiedenen Bereichen nach und nach zu einem unverzichtbaren Bestandteil geworden. Unter anderem ermöglicht die Entwicklung der Technologie zur Verarbeitung natürlicher Sprache (Natural Language Processing, NLP), dass Maschinen menschliche Sprache verstehen und verarbeiten können. ChatGPT (Chat-GeneratingPretrainedTransformer) ist eine Art von

So erstellen Sie einen intelligenten Kundendienstroboter mit ChatGPT PHP So erstellen Sie einen intelligenten Kundendienstroboter mit ChatGPT PHP Oct 28, 2023 am 09:34 AM

So bauen Sie mit ChatGPTPHP einen intelligenten Kundendienstroboter. Einführung: Mit der Entwicklung der Technologie der künstlichen Intelligenz werden Roboter zunehmend im Bereich Kundendienst eingesetzt. Der Einsatz von ChatGPTPHP zum Aufbau eines intelligenten Kundendienstroboters kann Unternehmen dabei helfen, effizientere und personalisiertere Kundendienste anzubieten. In diesem Artikel wird erläutert, wie Sie mit ChatGPTPHP einen intelligenten Kundendienstroboter erstellen, und es werden spezifische Codebeispiele bereitgestellt. 1. Installieren Sie ChatGPTPHP und nutzen Sie ChatGPTPHP, um einen intelligenten Kundendienstroboter aufzubauen.

See all articles