Inhaltsverzeichnis
1. KS-Diagramm
2. SHAP Plot
3, ROC-Kurve
4. Precision-Recall-Kurve
5, QQ-Diagramm
6. Das Diagramm der kumulativen erklärten Varianz (Cumulative Explained Variance Plot) ist ein Diagramm, das häufig bei Dimensionsreduktionstechniken wie der Hauptkomponentenanalyse (PCA) zur Erklärung von Daten verwendet wird Varianzinformationen und wählen Sie geeignete Dimensionen zur Darstellung der Daten aus.
7. Elbow Curve
Silhouette Curve ist ein leistungsstarkes Tool, das dabei hilft, die optimale Anzahl von Clustern auszuwählen, um sicherzustellen, dass das Clustering-Modell die intrinsische Struktur und Muster der Daten effektiv erfassen kann. Ellenbogenkurven sind bei vielen Clustern oft wirkungslos. Silhouette Curve ist die bessere Wahl.
Sie werden verwendet, um die Unreinheit oder Unordnung eines Knotens oder einer Aufteilung in einem Entscheidungsbaum zu messen. Die obige Abbildung vergleicht Gini-Verunreinigung und Entropie bei verschiedenen Aufteilungen, was Einblicke in die Kompromisse zwischen diesen Maßen geben kann.
Es gibt einen Kompromiss zwischen Voreingenommenheit und Varianz. Beim Training eines maschinellen Lernmodells führt eine zunehmende Modellkomplexität normalerweise zu einer Verringerung der Verzerrung, aber zu einer Erhöhung der Varianz, während eine abnehmende Modellkomplexität zu einer Verringerung der Varianz, aber zu einer Erhöhung der Verzerrung führt. Daher gibt es einen Kompromisspunkt, bei dem das Modell sowohl in der Lage ist, Muster in den Daten zu erfassen (Verzerrung reduzieren) als auch stabile Vorhersagen über verschiedene Daten hinweg zu zeigen (Varianz reduzieren).
Partielle Abhängigkeitsdiagramme werden häufig mit Interpretationstools und -techniken wie SHAP-Werten, LIME usw. verwendet, um die Vorhersagen von Black-Box-Modellen für maschinelles Lernen zu erklären. Sie bieten eine Visualisierung, die es Datenwissenschaftlern und Analysten erleichtert, die Beziehungen zwischen den Entscheidungen und Funktionen eines Modells zu verstehen.
Heim Technologie-Peripheriegeräte KI 11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen

11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen

Oct 25, 2023 am 08:13 AM
机器学习 数据分析

Visualisierung ist ein leistungsstarkes Werkzeug, um komplexe Datenmuster und Zusammenhänge auf intuitive und verständliche Weise zu kommunizieren. Sie spielen eine wichtige Rolle bei der Datenanalyse und liefern Erkenntnisse, die aus Rohdaten oder herkömmlichen numerischen Darstellungen oft nur schwer zu erkennen sind.

Visualisierung ist entscheidend für das Verständnis komplexer Datenmuster und -beziehungen. Wir stellen die 11 wichtigsten und unverzichtbaren Diagramme vor, die dabei helfen, die Informationen in den Daten offenzulegen und komplexe Daten verständlicher und aussagekräftiger zu machen.

11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen

1. KS-Diagramm

11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen

KS-Diagramm wird zur Bewertung von Verteilungsunterschieden verwendet. Die Kernidee besteht darin, den maximalen Abstand zwischen den kumulativen Verteilungsfunktionen (CDF) zweier Verteilungen zu messen. Je kleiner der maximale Abstand, desto wahrscheinlicher ist es, dass sie zur gleichen Verteilung gehören. Daher wird es hauptsächlich als „statistischer Test“ zur Bestimmung der Unterschiede in den Verteilungen und nicht als „Diagramm“ interpretiert.

2. SHAP Plot

11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen

SHAP Plot fasst die Bedeutung von Features für die Modellvorhersage zusammen, indem es die Wechselwirkungen/Abhängigkeiten zwischen Features berücksichtigt. Nützlich, wenn Sie bestimmen möchten, wie sich unterschiedliche Werte (niedrig oder hoch) einer Funktion auf die Gesamtausgabe auswirken.

3, ROC-Kurve

11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen

ROC-Kurve beschreibt den Kompromiss zwischen der Rate richtig positiver Ergebnisse (gute Leistung) und der Rate falsch positiver Ergebnisse (schlechte Leistung) über verschiedene Klassifizierungsschwellenwerte hinweg. Es zeigt den Kompromiss zwischen der Sensitivität (True Positive Rate, TPR) und der Spezifität (True Negative Rate, TNR) des Klassifikators bei verschiedenen Schwellenwerten.

Die ROC-Kurve ist ein häufig verwendetes Tool, das sich besonders zur Bewertung der Leistung medizinischer Diagnosetests, Klassifikatoren für maschinelles Lernen, Risikomodelle usw. eignet. Durch die Analyse von ROC-Kurven und die Berechnung von AUC können Sie die Leistung Ihres Klassifikators besser verstehen, geeignete Schwellenwerte auswählen und die Leistung verschiedener Modelle vergleichen.

4. Precision-Recall-Kurve

11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen

Precision-Recall-Kurve (Precision-Recall) ist ein weiteres wichtiges Werkzeug zur Bewertung der Leistung von Klassifizierungsmodellen, besonders geeignet für unausgeglichene Klassenverteilungsprobleme, bei denen die Anzahl der positive und negative Klassenstichproben sind sehr unterschiedlich. Diese Kurve konzentriert sich auf die Vorhersagegenauigkeit des Modells in der positiven Kategorie und seine Fähigkeit, alle echten positiven Beispiele zu finden. Es beschreibt den Kompromiss zwischen Präzision und Erinnerung zwischen verschiedenen Klassifizierungsschwellenwerten.

5, QQ-Diagramm

11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen

QQ-Diagramm (Quantil-Quantil-Diagramm, Quantil-Quantil-Diagramm) ist eine Methode zum Vergleichen, ob die Quantilverteilungen zweier Datensätze ähnlich sind. Es wird häufig verwendet, um zu überprüfen, ob ein Datensatz einer bestimmten theoretischen Verteilung, beispielsweise der Normalverteilung, entspricht.

Es bewertet die Verteilungsähnlichkeit zwischen den beobachteten Daten und der theoretischen Verteilung. Quantile der beiden Verteilungen werden aufgetragen. Eine Abweichung von einer Geraden stellt eine Abweichung von der angenommenen Verteilung dar.

QQ Plot ist ein intuitives Tool, mit dem die Verteilung von Daten untersucht werden kann, insbesondere bei der statistischen Modellierung und Datenanalyse. Durch Beobachtung der Position der Punkte im QQ-Plot können Sie erkennen, ob die Daten einer bestimmten theoretischen Verteilung entsprechen oder ob es Ausreißer oder Abweichungen gibt.

6. Das Diagramm der kumulativen erklärten Varianz (Cumulative Explained Variance Plot) ist ein Diagramm, das häufig bei Dimensionsreduktionstechniken wie der Hauptkomponentenanalyse (PCA) zur Erklärung von Daten verwendet wird Varianzinformationen und wählen Sie geeignete Dimensionen zur Darstellung der Daten aus.

11 erweiterte Visualisierungen für Datenanalyse und maschinelles LernenDatenwissenschaftler und -analysten wählen die geeignete Anzahl von Hauptkomponenten basierend auf den Informationen im Cumulative Explained Variance Plot aus, damit die Eigenschaften der Daten nach der Dimensionsreduzierung immer noch effektiv dargestellt werden können. Dies trägt dazu bei, die Datendimensionen zu reduzieren, die Effizienz des Modelltrainings zu verbessern und genügend Informationen zu behalten, um den erfolgreichen Abschluss von Aufgaben zu unterstützen.

7. Elbow Curve

11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen

Elbow Curve ist ein Visualisierungstool, das dabei hilft, die optimale Anzahl von Clustern (Anzahl der Cluster) beim K-Means-Clustering zu bestimmen. K-Means ist ein häufig verwendeter unbeaufsichtigter Lernalgorithmus, der zur Klassifizierung von Datenpunkten in verschiedene Cluster oder Gruppen verwendet wird. Elbow Curve hilft dabei, die richtige Anzahl von Clustern zu finden, um die Struktur Ihrer Daten am besten darzustellen.

Elbow Curve ist ein häufig verwendetes Tool, um die optimale Anzahl von Clustern beim K-Means-Clustering auszuwählen. Die Punkte am Ellenbogen stellen die ideale Anzahl von Clustern dar. Dadurch werden die zugrunde liegende Struktur und Muster der Daten besser erfasst. 8, Silhouette-Kurve Der Silhouette-Koeffizient ist ein Maß für die Ähnlichkeit von Datenpunkten innerhalb von Clustern und die Trennung von Datenpunkten zwischen Clustern beim Clustering.

Silhouette Curve ist ein leistungsstarkes Tool, das dabei hilft, die optimale Anzahl von Clustern auszuwählen, um sicherzustellen, dass das Clustering-Modell die intrinsische Struktur und Muster der Daten effektiv erfassen kann. Ellenbogenkurven sind bei vielen Clustern oft wirkungslos. Silhouette Curve ist die bessere Wahl.

11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen9, Gini-Verunreinigung und Entropie

Gini-Verunreinigung und Entropie sind zwei Indikatoren, die häufig in Algorithmen für maschinelles Lernen wie Entscheidungsbäumen und Zufallswäldern verwendet werden, um die Datenverunreinigung zu bewerten und optimale Aufteilungseigenschaften auszuwählen. Sie werden beide verwendet, um das Ausmaß der Unordnung in einem Datensatz zu messen, um Entscheidungsbäumen bei der Entscheidung zu helfen, wie die Daten aufgeteilt werden sollen.

Sie werden verwendet, um die Unreinheit oder Unordnung eines Knotens oder einer Aufteilung in einem Entscheidungsbaum zu messen. Die obige Abbildung vergleicht Gini-Verunreinigung und Entropie bei verschiedenen Aufteilungen, was Einblicke in die Kompromisse zwischen diesen Maßen geben kann.

11 erweiterte Visualisierungen für Datenanalyse und maschinelles LernenBeide sind gültige Indikatoren für die Knotenaufteilungsauswahl in maschinellen Lernalgorithmen wie Entscheidungsbäumen, aber welcher man wählt, hängt vom spezifischen Problem und den Dateneigenschaften ab.

10, Bias-Varianz-Kompromiss

Der Bias-Varianz-Kompromiss (Bias-Varianz-Kompromiss) ist ein wichtiges Konzept beim maschinellen Lernen, das verwendet wird, um den Unterschied zwischen der Vorhersageleistung und der Generalisierungsfähigkeit des Modells zu erklären Gleichgewicht.

Es gibt einen Kompromiss zwischen Voreingenommenheit und Varianz. Beim Training eines maschinellen Lernmodells führt eine zunehmende Modellkomplexität normalerweise zu einer Verringerung der Verzerrung, aber zu einer Erhöhung der Varianz, während eine abnehmende Modellkomplexität zu einer Verringerung der Varianz, aber zu einer Erhöhung der Verzerrung führt. Daher gibt es einen Kompromisspunkt, bei dem das Modell sowohl in der Lage ist, Muster in den Daten zu erfassen (Verzerrung reduzieren) als auch stabile Vorhersagen über verschiedene Daten hinweg zu zeigen (Varianz reduzieren).

11 erweiterte Visualisierungen für Datenanalyse und maschinelles LernenDas Verständnis des Bias-Varianz-Kompromisses hilft Praktikern des maschinellen Lernens, Modelle besser zu erstellen und abzustimmen, um eine bessere Leistung und Generalisierungsfähigkeiten zu erreichen. Es beleuchtet den Zusammenhang zwischen Modellkomplexität und Datensatzgröße und zeigt, wie eine Unter- und Überanpassung vermieden werden kann.

11. Partielle Abhängigkeitsdiagramme:

Partielle Abhängigkeitsdiagramme (Partial Dependency Plots) sind ein Werkzeug zur Visualisierung und Erklärung von Modellen für maschinelles Lernen, das besonders nützlich ist, um die Auswirkungen einzelner Funktionen auf Modellvorhersagen zu verstehen. Diese Diagramme helfen dabei, die Beziehung zwischen Merkmalen und Zielvariablen aufzuzeigen, um das Verhalten und die Entscheidungen des Modells besser zu verstehen.

Partielle Abhängigkeitsdiagramme werden häufig mit Interpretationstools und -techniken wie SHAP-Werten, LIME usw. verwendet, um die Vorhersagen von Black-Box-Modellen für maschinelles Lernen zu erklären. Sie bieten eine Visualisierung, die es Datenwissenschaftlern und Analysten erleichtert, die Beziehungen zwischen den Entscheidungen und Funktionen eines Modells zu verstehen.

11 erweiterte Visualisierungen für Datenanalyse und maschinelles LernenZusammenfassung

Diese Diagramme decken häufig verwendete Visualisierungstools und -konzepte in den Bereichen Datenanalyse und maschinelles Lernen ab, die dabei helfen, die Modellleistung zu bewerten und zu erklären, die Datenverteilung zu verstehen und die besten Parameter und Modelle auszuwählen. Komplexität und die Auswirkung von Insight-Funktionen auf Vorhersagen.

Das obige ist der detaillierte Inhalt von11 erweiterte Visualisierungen für Datenanalyse und maschinelles Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Apr 12, 2024 pm 05:55 PM

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Apr 29, 2024 pm 06:50 PM

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Apr 29, 2024 pm 03:25 PM

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten May 30, 2024 pm 01:24 PM

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.

See all articles