Heim Technologie-Peripheriegeräte KI Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Oct 27, 2023 pm 03:13 PM
理论 dalle

In einer aktuellen Studie haben Forscher von UW und Meta einen neuen Dekodierungsalgorithmus vorgeschlagen, der den von AlphaGo verwendeten Monte-Carlo Tree Search (MCTS)-Algorithmus auf das mit Proximal Policy Optimization (PPO) trainierte RLHF-Sprachmodell anwendet ) wird die Qualität des vom Modell generierten Textes erheblich verbessert.

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Der PPO-MCTS-Algorithmus sucht nach einer besseren Dekodierungsstrategie, indem er mehrere Kandidatensequenzen untersucht und bewertet. Der von PPO-MCTS generierte Text kann die Aufgabenanforderungen besser erfüllen.

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Link zum Papier: https://arxiv.org/pdf/2309.15028.pdf

LLM, das für öffentliche Benutzer freigegeben ist, wie GPT-4/Claude/LLaMA-2-chat, verwendet normalerweise RLHF, um An Benutzerpräferenzen anpassen. PPO ist zum Algorithmus der Wahl für die Durchführung von RLHF für die oben genannten Modelle geworden. Bei der Bereitstellung der Modelle werden jedoch häufig einfache Decodierungsalgorithmen (z. B. Top-P-Sampling) verwendet, um Text aus diesen Modellen zu generieren.

Der Autor dieses Artikels schlägt vor, eine Variante des Monte-Carlo-Tree-Search-Algorithmus (MCTS) zu verwenden, um das PPO-Modell zu dekodieren, und nennt die Methode PPO-MCTS. Diese Methode basiert auf einem Wertemodell, das die Suche nach optimalen Sequenzen leitet. Da es sich bei PPO selbst um einen akteurkritischen Algorithmus handelt, wird während des Trainings als Nebenprodukt ein Wertemodell erzeugt.

PPO-MCTS schlägt vor, dieses Wertemodell als Leitfaden für die MCTS-Suche zu verwenden, und seine Nützlichkeit wird durch theoretische und experimentelle Perspektiven überprüft. Die Autoren fordern Forscher und Ingenieure, die RLHF zum Trainieren von Modellen verwenden, auf, ihre Wertmodelle zu bewahren und als Open Source bereitzustellen.

PPO-MCTS-Dekodierungsalgorithmus

Um ein Token zu generieren, führt PPO-MCTS mehrere Simulationsrunden durch und baut nach und nach einen Suchbaum auf. Die Knoten des Baums stellen die generierten Textpräfixe dar (einschließlich der ursprünglichen Eingabeaufforderung), und die Kanten des Baums stellen die neu generierten Token dar. PPO-MCTS verwaltet eine Reihe statistischer Werte im Baum: verwaltet für jeden Knoten eine Anzahl von Besuchen Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau und einen Durchschnittswert Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau für jede Kante Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau und verwaltet einen Q-Wert Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau.

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Der Suchbaum am Ende der Fünf-Runden-Simulation. Die Zahl an einer Kante gibt die Anzahl der Besuche an dieser Kante an.

Der Aufbau des Baums beginnt mit einem Wurzelknoten, der die aktuelle Eingabeaufforderung darstellt. Jede Simulationsrunde umfasst die folgenden vier Schritte:

1. Wähleneinen unerforschten Knoten. Wählen Sie ausgehend vom Wurzelknoten Kanten aus und gehen Sie gemäß der folgenden PUCT-Formel nach unten vor, bis Sie einen unerforschten Knoten erreichen:

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Diese Formel bevorzugt Teilbäume mit hohen Q-Werten und niedrigen Besuchen, sodass Erkundung und Ausbeutung besser ausgeglichen werden können .

2. Erweitern den im vorherigen Schritt ausgewählten Knoten und berechnen Sie die A-priori-Wahrscheinlichkeit des nächsten Tokens Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau mithilfe des PPO-Richtlinienmodells.

3. Bewertenden Wert des Knotens. In diesem Schritt wird das Wertemodell des PPO als Schlussfolgerung verwendet. Die Variablen auf diesem Knoten und seinen untergeordneten Kanten werden wie folgt initialisiert:

BacktrackDie leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

und aktualisieren die statistischen Werte im Baum. Verfolgen Sie ausgehend vom neu erkundeten Knoten nach oben zum Wurzelknoten und aktualisieren Sie die folgenden Variablen auf dem Pfad:

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Vier Simulationsschritte in jeder Runde: Auswahl, Erweiterung, Bewertung und Backtracking. Unten rechts ist der Suchbaum nach der ersten Simulationsrunde.

Nach mehreren Simulationsrunden wird die Anzahl der Besuche am Unterrand des Wurzelknotens verwendet, um den nächsten Token zu bestimmen. Token mit einer hohen Anzahl von Besuchen werden mit höherer Wahrscheinlichkeit generiert (hier können Temperaturparameter hinzugefügt werden). zur Kontrolle der Textvielfalt). Die Eingabeaufforderung des neuen Tokens wird im nächsten Schritt als Wurzelknoten des Suchbaums hinzugefügt. Wiederholen Sie diesen Vorgang, bis die Generierung abgeschlossen ist.

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Der Suchbaum nach der 2., 3., 4. und 5. Simulationsrunde.

Im Vergleich zur traditionellen Monte-Carlo-Baumsuche sind die Neuerungen von PPO-MCTS:

1 Im PUCT des Auswahlschritts wird der Q-Wert anstelle des Durchschnittswerts Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau in der Originalversion verwendet. Dies liegt daran, dass PPO einen aktionsspezifischen KL-Regularisierungsterm in der Belohnung Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau jedes Tokens enthält, um die Parameter des Richtlinienmodells innerhalb des Vertrauensintervalls zu halten. Durch die Verwendung des Q-Werts kann dieser Regularisierungsterm beim Dekodieren korrekt berücksichtigt werden: Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

2 Im Schritt

Bewertung wird der Q-Wert der Unterkante des neu untersuchten Knotens auf den Bewertungswert des Knotens initialisiert ( anstelle der Originalversion der MCTS-Nullinitialisierung in ). Diese Änderung behebt ein Problem, bei dem PPO-MCTS in die volle Auslastung gerät.

3. Deaktivieren Sie die Erkundung von Knoten im [EOS]-Token-Teilbaum, um undefiniertes Modellverhalten zu vermeiden.

Experiment zur Textgenerierung

Der Artikel führt Experimente zu vier Textgenerierungsaufgaben durch, nämlich: Kontrolle der Textstimmung (Stimmungssteuerung), Reduzierung der Texttoxizität (Toxizitätsreduzierung) und Wissensintrospektion für Fragen und Antworten (Wissensintrospektion) und Universelle Ausrichtung menschlicher Präferenzen (hilfreiche und harmlose Chatbots).

Der Artikel vergleicht PPO-MCTS hauptsächlich mit den folgenden Basismethoden: (1) Verwendung von Top-P-Sampling zur Generierung von Text aus dem PPO-Richtlinienmodell („PPO“ in der Abbildung); (2) Hinzufügen von Best-of auf der Basis von 1 -n Sampling („PPO + Best-of-n“ in der Abbildung).

Der Artikel bewertet die Zielzufriedenheitsrate und die Textkompetenz jeder Methode für jede Aufgabe.

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Links: Kontrollieren Sie die Emotionen des Textes; Rechts: Reduzieren Sie die Toxizität des Textes.

Bei der Kontrolle der Textstimmung erreicht PPO-MCTS eine um 30 Prozentpunkte höhere Zielerfüllungsrate als die PPO-Basislinie, ohne die Textflüssigkeit zu beeinträchtigen, und eine um 20 Prozentpunkte höhere Erfolgsquote bei der manuellen Bewertung. Bei der Reduzierung der Texttoxizität ist die durchschnittliche Toxizität des mit dieser Methode generierten Textes 34 % niedriger als die PPO-Basislinie, und die Erfolgsquote bei der manuellen Bewertung ist ebenfalls 30 % höher. Es wird außerdem darauf hingewiesen, dass die Verwendung von Best-of-n-Sampling bei beiden Aufgaben die Textqualität nicht effektiv verbessert.

Die leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau

Links: Wissensselbstbeobachtung für Fragen und Antworten. Rechts: Universelle menschliche Präferenzausrichtung.

Bei der Wissensintrospektion für Fragen und Antworten ist der Nutzen des durch PPO-MCTS generierten Wissens 12 % höher als der der PPO-Basislinie. Bei der allgemeinen Ausrichtung menschlicher Präferenzen verwenden wir den HH-RLHF-Datensatz, um nützliche und harmlose Dialogmodelle zu erstellen, wobei die Gewinnquote bei der manuellen Bewertung um 5 Prozentpunkte höher ist als die PPO-Basislinie.

Abschließend zieht der Artikel anhand der Analyse- und Ablationsexperimente des PPO-MCTS-Algorithmus die folgenden Schlussfolgerungen, um die Vorteile dieses Algorithmus zu untermauern:

  1. Das Wertmodell von PPO eignet sich besser zur Steuerung der Suche als das für PPO verwendete Belohnungsmodell Trainingsaspekte sind effektiver.

  2. Für die von PPO trainierten Strategie- und Wertmodelle ist MCTS eine effektive heuristische Suchmethode, und ihre Wirkung ist besser als bei einigen anderen Suchalgorithmen (z. B. schrittweise Wertedekodierung).

  3. PPO-MCTS hat einen besseren Kompromiss zwischen Belohnung und Fluenz als andere Methoden zur Erhöhung der Belohnungen (z. B. die Verwendung von PPO für mehr Iterationen).

Zusammenfassend zeigt dieser Artikel die Wirksamkeit des Wertemodells bei der Steuerung der Suche durch die Kombination von PPO mit der Monte-Carlo-Baumsuche (MCTS) und veranschaulicht die Verwendung weiterer Schritte der heuristischen Suche in der Modellbereitstellungsphase Höhere Qualität ist ein gangbarer Weg.

Weitere Methoden und experimentelle Details finden Sie im Originalpapier. Titelbild generiert von DALLE-3.

Das obige ist der detaillierte Inhalt vonDie leistungsstarke Kombination aus RLHF- und AlphaGo-Kerntechnologien, UW/Meta, bringt die Textgenerierungsfunktionen auf ein neues Niveau. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

„Defect Spectrum' durchbricht die Grenzen der herkömmlichen Fehlererkennung und erreicht erstmals eine hochpräzise und umfassende semantische Fehlererkennung in der Industrie. „Defect Spectrum' durchbricht die Grenzen der herkömmlichen Fehlererkennung und erreicht erstmals eine hochpräzise und umfassende semantische Fehlererkennung in der Industrie. Jul 26, 2024 pm 05:38 PM

In der modernen Fertigung ist die genaue Fehlererkennung nicht nur der Schlüssel zur Sicherstellung der Produktqualität, sondern auch der Kern für die Verbesserung der Produktionseffizienz. Allerdings mangelt es vorhandenen Datensätzen zur Fehlererkennung häufig an der Genauigkeit und dem semantischen Reichtum, die für praktische Anwendungen erforderlich sind, was dazu führt, dass Modelle bestimmte Fehlerkategorien oder -orte nicht identifizieren können. Um dieses Problem zu lösen, hat ein Spitzenforschungsteam bestehend aus der Hong Kong University of Science and Technology Guangzhou und Simou Technology innovativ den „DefectSpectrum“-Datensatz entwickelt, der eine detaillierte und semantisch reichhaltige groß angelegte Annotation von Industriedefekten ermöglicht. Wie in Tabelle 1 gezeigt, bietet der Datensatz „DefectSpectrum“ im Vergleich zu anderen Industriedatensätzen die meisten Fehleranmerkungen (5438 Fehlerproben) und die detaillierteste Fehlerklassifizierung (125 Fehlerkategorien).

Das NVIDIA-Dialogmodell ChatQA wurde auf Version 2.0 weiterentwickelt, wobei die angegebene Kontextlänge 128 KB beträgt Das NVIDIA-Dialogmodell ChatQA wurde auf Version 2.0 weiterentwickelt, wobei die angegebene Kontextlänge 128 KB beträgt Jul 26, 2024 am 08:40 AM

Die offene LLM-Community ist eine Ära, in der hundert Blumen blühen und konkurrieren. Sie können Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 und viele andere sehen hervorragende Darsteller. Allerdings weisen offene Modelle im Vergleich zu den proprietären Großmodellen GPT-4-Turbo in vielen Bereichen noch erhebliche Lücken auf. Zusätzlich zu allgemeinen Modellen wurden einige offene Modelle entwickelt, die sich auf Schlüsselbereiche spezialisieren, wie etwa DeepSeek-Coder-V2 für Programmierung und Mathematik und InternVL für visuelle Sprachaufgaben.

Training mit Millionen von Kristalldaten zur Lösung kristallographischer Phasenprobleme, die Deep-Learning-Methode PhAI wird in Science veröffentlicht Training mit Millionen von Kristalldaten zur Lösung kristallographischer Phasenprobleme, die Deep-Learning-Methode PhAI wird in Science veröffentlicht Aug 08, 2024 pm 09:22 PM

Herausgeber |KX Bis heute sind die durch die Kristallographie ermittelten Strukturdetails und Präzision, von einfachen Metallen bis hin zu großen Membranproteinen, mit keiner anderen Methode zu erreichen. Die größte Herausforderung, das sogenannte Phasenproblem, bleibt jedoch die Gewinnung von Phaseninformationen aus experimentell bestimmten Amplituden. Forscher der Universität Kopenhagen in Dänemark haben eine Deep-Learning-Methode namens PhAI entwickelt, um Kristallphasenprobleme zu lösen. Ein Deep-Learning-Neuronales Netzwerk, das mithilfe von Millionen künstlicher Kristallstrukturen und den entsprechenden synthetischen Beugungsdaten trainiert wird, kann genaue Elektronendichtekarten erstellen. Die Studie zeigt, dass diese Deep-Learning-basierte Ab-initio-Strukturlösungsmethode das Phasenproblem mit einer Auflösung von nur 2 Angström lösen kann, was nur 10 bis 20 % der bei atomarer Auflösung verfügbaren Daten im Vergleich zur herkömmlichen Ab-initio-Berechnung entspricht

Google AI gewann die Silbermedaille der IMO Mathematical Olympiad, das mathematische Argumentationsmodell AlphaProof wurde eingeführt und Reinforcement Learning ist zurück Google AI gewann die Silbermedaille der IMO Mathematical Olympiad, das mathematische Argumentationsmodell AlphaProof wurde eingeführt und Reinforcement Learning ist zurück Jul 26, 2024 pm 02:40 PM

Für KI ist die Mathematikolympiade kein Problem mehr. Am Donnerstag hat die künstliche Intelligenz von Google DeepMind eine Meisterleistung vollbracht: Sie nutzte KI, um meiner Meinung nach die eigentliche Frage der diesjährigen Internationalen Mathematikolympiade zu lösen, und war nur einen Schritt davon entfernt, die Goldmedaille zu gewinnen. Der IMO-Wettbewerb, der gerade letzte Woche zu Ende ging, hatte sechs Fragen zu Algebra, Kombinatorik, Geometrie und Zahlentheorie. Das von Google vorgeschlagene hybride KI-System beantwortete vier Fragen richtig und erzielte 28 Punkte und erreichte damit die Silbermedaillenstufe. Anfang dieses Monats hatte der UCLA-Professor Terence Tao gerade die KI-Mathematische Olympiade (AIMO Progress Award) mit einem Millionenpreis gefördert. Unerwarteterweise hatte sich das Niveau der KI-Problemlösung vor Juli auf dieses Niveau verbessert. Beantworten Sie die Fragen meiner Meinung nach gleichzeitig. Am schwierigsten ist es meiner Meinung nach, da sie die längste Geschichte, den größten Umfang und die negativsten Fragen haben

Der Standpunkt der Natur: Die Erprobung künstlicher Intelligenz in der Medizin ist im Chaos. Was ist zu tun? Der Standpunkt der Natur: Die Erprobung künstlicher Intelligenz in der Medizin ist im Chaos. Was ist zu tun? Aug 22, 2024 pm 04:37 PM

Herausgeber | ScienceAI Basierend auf begrenzten klinischen Daten wurden Hunderte medizinischer Algorithmen genehmigt. Wissenschaftler diskutieren darüber, wer die Werkzeuge testen soll und wie dies am besten geschieht. Devin Singh wurde Zeuge, wie ein pädiatrischer Patient in der Notaufnahme einen Herzstillstand erlitt, während er lange auf eine Behandlung wartete, was ihn dazu veranlasste, den Einsatz von KI zu erforschen, um Wartezeiten zu verkürzen. Mithilfe von Triage-Daten aus den Notaufnahmen von SickKids erstellten Singh und Kollegen eine Reihe von KI-Modellen, um mögliche Diagnosen zu stellen und Tests zu empfehlen. Eine Studie zeigte, dass diese Modelle die Zahl der Arztbesuche um 22,3 % verkürzen können und die Verarbeitung der Ergebnisse pro Patient, der einen medizinischen Test benötigt, um fast drei Stunden beschleunigt. Der Erfolg von Algorithmen der künstlichen Intelligenz in der Forschung bestätigt dies jedoch nur

Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Jul 25, 2024 am 06:42 AM

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

PRO |. Warum verdienen große Modelle, die auf MoE basieren, mehr Aufmerksamkeit? PRO |. Warum verdienen große Modelle, die auf MoE basieren, mehr Aufmerksamkeit? Aug 07, 2024 pm 07:08 PM

Im Jahr 2023 entwickeln sich fast alle Bereiche der KI in beispielloser Geschwindigkeit weiter. Gleichzeitig verschiebt die KI ständig die technologischen Grenzen wichtiger Bereiche wie der verkörperten Intelligenz und des autonomen Fahrens. Wird der Status von Transformer als Mainstream-Architektur großer KI-Modelle durch den multimodalen Trend erschüttert? Warum ist die Erforschung großer Modelle auf Basis der MoE-Architektur (Mixture of Experts) zu einem neuen Trend in der Branche geworden? Können Large Vision Models (LVM) ein neuer Durchbruch im allgemeinen Sehvermögen sein? ...Aus dem PRO-Mitglieder-Newsletter 2023 dieser Website, der in den letzten sechs Monaten veröffentlicht wurde, haben wir 10 spezielle Interpretationen ausgewählt, die eine detaillierte Analyse der technologischen Trends und industriellen Veränderungen in den oben genannten Bereichen bieten, um Ihnen dabei zu helfen, Ihre Ziele in der Zukunft zu erreichen Jahr vorbereitet sein. Diese Interpretation stammt aus Week50 2023

SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen Jul 17, 2024 pm 06:37 PM

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

See all articles