Inhaltsverzeichnis
Idee für die Abschlussarbeit:
Hauptbeiträge:
Netzwerkdesign:
Experimentelle Ergebnisse:
Heim Technologie-Peripheriegeräte KI ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

Oct 31, 2023 am 11:13 AM
自动驾驶 地图

Skalierbare Karten: Skalierbares Kartenlernen für die Online-Erstellung vektorisierter HD-Karten über große Entfernungen

Bitte klicken Sie auf den folgenden Link, um das Papier zu lesen: https://arxiv.org/pdf/2310.13378.pdf

Code-Link: https:/ / github.com/jingy1yu/ScalableMap

Der Autor kommt von der Wuhan University

ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

Idee für die Abschlussarbeit:

In diesem Artikel wird ein neuartiger End-to-End-Prozess zur Erstellung von Online-Fernvektoren mithilfe von Fahrzeugkamerasensoren vorgeschlagen. Hoch -Definition-Karten (HD). Vektorisierte Darstellungen hochpräziser Karten verwenden Polylinien und Polygone zur Darstellung von Kartenmerkmalen, die häufig von nachgelagerten Aufgaben verwendet werden. Bisherige Lösungen, die mit Bezug auf die dynamische Zielerkennung entwickelt wurden, ignorierten jedoch die strukturellen Einschränkungen innerhalb linearer Kartenelemente, was zu Leistungseinbußen in Fernszenen führte. In diesem Artikel werden die Attribute von Kartenfunktionen verwendet, um die Leistung der Kartenerstellung zu verbessern. In diesem Artikel werden mithilfe linearer Strukturen genauere Merkmale aus der Vogelperspektive (BEV) extrahiert. Anschließend wird eine hierarchische, spärliche Diagrammdarstellung vorgeschlagen, um die Skalierbarkeit vektorisierter Diagrammelemente weiter zu nutzen, und auf der Grundlage dieser Überwachungsstrategie ein progressiver Dekodierungsmechanismus entworfen . Die Methode ScalableMap dieses Artikels zeigte eine hervorragende Leistung im nuScenes-Datensatz, insbesondere in Langstreckenszenen. Im Vergleich zum vorherigen hochmodernen Modell verbesserte sie sich um 6,5 mAP und erreichte einen FPS von 18,3

Hauptbeiträge:

(i) In diesem Artikel wird ScalableMap vorgestellt, die erste End-to-End-Pipeline für die Erstellung von Vektorkarten über große Entfernungen. Dieses Papier nutzt die strukturellen Eigenschaften von Zuordnungselementen, um genauere BEV-Merkmale zu extrahieren, schlägt HSMR basierend auf skalierbaren vektorisierten Elementen vor und entwirft entsprechend progressive Decoder und Überwachungsstrategien. All dies führt zu einer überlegenen Kartenwahrnehmung über große Entfernungen.

Durch umfangreiche experimentelle Auswertungen testete diese Studie die Leistung von ScalableMap am nuScenes-Datensatz [17]. Die Forschungsmethode erzielte hochmoderne Ergebnisse beim hochpräzisen Kartenlernen über große Entfernungen und verbesserte 6,5 mAP gegenüber bestehenden multimodalen Methoden und erreichte gleichzeitig eine Geschwindigkeit von 18,3 Bildern pro Sekunde

Netzwerkdesign:

Dies Artikel Ziel ist es, die strukturellen Eigenschaften vektorisierter Kartenelemente auszunutzen, um die Herausforderung der genauen Erkennung von Kartenelementen über größere Entfernungen zu lösen. Zunächst extrahiert dieser Artikel positionsbewusste BEV-Merkmale und instanzbewusste BEV-Merkmale über jeweils zwei Zweige und verschmilzt sie unter der Führung einer linearen Struktur, um hybride BEV-Merkmale zu erhalten. Als nächstes schlägt dieser Artikel eine hierarchische Sparse-Map-Darstellung (HSMR) vor, um Kartenelemente auf spärliche, aber genaue Weise zu abstrahieren. Durch die Integration dieser Darstellung mit der von DETR [16] vorgeschlagenen Kaskadendekodierungsschicht wird ein progressiver Decoder entwickelt, der die Einschränkungen strukturierter Informationen durch Nutzung der Skalierbarkeit vektorisierter Abbildungselemente und einer progressiven Überwachungsstrategie zur Verbesserung der Inferenzgenauigkeit erweitert. Die Lösung dieses Artikels, ScalableMap, erhöht dynamisch die Stichprobendichte der Karte, um Inferenzergebnisse in verschiedenen Maßstäben zu erhalten, sodass dieser Artikel schneller genauere Karteninformationen erhalten kann.

ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

Bitte beachten Sie den neu geschriebenen Inhalt unten: Abbildung 1: ScalableMap-Übersicht. (a) Strukturgesteuerter Hybrid-BEV-Feature-Extraktor. (b) Hierarchische spärliche Kartendarstellung und progressiver Decoder. (c) Progressive Supervision

ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

Abbildung 2: Visualisierung des progressiven Polylinienverlusts.

Experimentelle Ergebnisse:

ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

Um den Inhalt neu zu schreiben, ohne die ursprüngliche Bedeutung zu ändern, muss der Originaltext ins Chinesische umgeschrieben werden

Yu, J., Zhang , Z., Xia, S. und Sang, J. (2023). ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung vektorisierter HD-Karten mit großer Reichweite. ArXiv. /abs/2310.13378

ScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite

Der Inhalt, der umgeschrieben werden muss, ist: Schreiben Sie den Inhalt neu, ohne die ursprüngliche Bedeutung zu ändern. Die Sprache, in die umgeschrieben werden soll, ist Chinesisch. Der Originalsatz muss nicht erscheinen

Das obige ist der detaillierte Inhalt vonScalableMap: Skalierbares Kartenlernen für die Online-Erstellung von vektorisierten, hochpräzisen Karten mit großer Reichweite. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So machen Sie Google Maps zur Standardkarte im iPhone So machen Sie Google Maps zur Standardkarte im iPhone Apr 17, 2024 pm 07:34 PM

Die Standardkarte auf dem iPhone ist Maps, Apples proprietärer Geolokalisierungsanbieter. Obwohl die Karte immer besser wird, funktioniert sie außerhalb der Vereinigten Staaten nicht gut. Im Vergleich zu Google Maps hat es nichts zu bieten. In diesem Artikel besprechen wir die möglichen Schritte, um Google Maps als Standardkarte auf Ihrem iPhone zu nutzen. So machen Sie Google Maps zur Standardkarte auf dem iPhone. Das Festlegen von Google Maps als Standardkarten-App auf Ihrem Telefon ist einfacher als Sie denken. Befolgen Sie die nachstehenden Schritte – Erforderliche Schritte – Sie müssen Gmail auf Ihrem Telefon installiert haben. Schritt 1 – Öffnen Sie den AppStore. Schritt 2 – Suchen Sie nach „Gmail“. Schritt 3 – Klicken Sie auf neben der Gmail-App

Warum ist Gaussian Splatting beim autonomen Fahren so beliebt, dass NeRF allmählich aufgegeben wird? Warum ist Gaussian Splatting beim autonomen Fahren so beliebt, dass NeRF allmählich aufgegeben wird? Jan 17, 2024 pm 02:57 PM

Oben geschrieben und persönliches Verständnis des Autors. Dreidimensionales Gaussplatting (3DGS) ist eine transformative Technologie, die in den letzten Jahren in den Bereichen explizite Strahlungsfelder und Computergrafik entstanden ist. Diese innovative Methode zeichnet sich durch die Verwendung von Millionen von 3D-Gaußkurven aus, was sich stark von der Neural Radiation Field (NeRF)-Methode unterscheidet, die hauptsächlich ein implizites koordinatenbasiertes Modell verwendet, um räumliche Koordinaten auf Pixelwerte abzubilden. Mit seiner expliziten Szenendarstellung und differenzierbaren Rendering-Algorithmen garantiert 3DGS nicht nur Echtzeit-Rendering-Fähigkeiten, sondern führt auch ein beispielloses Maß an Kontrolle und Szenenbearbeitung ein. Dies positioniert 3DGS als potenziellen Game-Changer für die 3D-Rekonstruktion und -Darstellung der nächsten Generation. Zu diesem Zweck geben wir erstmals einen systematischen Überblick über die neuesten Entwicklungen und Anliegen im Bereich 3DGS.

Wie lässt sich das Long-Tail-Problem in autonomen Fahrszenarien lösen? Wie lässt sich das Long-Tail-Problem in autonomen Fahrszenarien lösen? Jun 02, 2024 pm 02:44 PM

Gestern wurde ich während des Interviews gefragt, ob ich irgendwelche Long-Tail-Fragen gestellt hätte, also dachte ich, ich würde eine kurze Zusammenfassung geben. Das Long-Tail-Problem des autonomen Fahrens bezieht sich auf Randfälle bei autonomen Fahrzeugen, also mögliche Szenarien mit geringer Eintrittswahrscheinlichkeit. Das wahrgenommene Long-Tail-Problem ist einer der Hauptgründe, die derzeit den betrieblichen Designbereich intelligenter autonomer Einzelfahrzeugfahrzeuge einschränken. Die zugrunde liegende Architektur und die meisten technischen Probleme des autonomen Fahrens wurden gelöst, und die verbleibenden 5 % der Long-Tail-Probleme wurden nach und nach zum Schlüssel zur Einschränkung der Entwicklung des autonomen Fahrens. Zu diesen Problemen gehören eine Vielzahl fragmentierter Szenarien, Extremsituationen und unvorhersehbares menschliches Verhalten. Der „Long Tail“ von Randszenarien beim autonomen Fahren bezieht sich auf Randfälle in autonomen Fahrzeugen (AVs). Randfälle sind mögliche Szenarien mit geringer Eintrittswahrscheinlichkeit. diese seltenen Ereignisse

Kamera oder Lidar wählen? Eine aktuelle Übersicht über die Erzielung einer robusten 3D-Objekterkennung Kamera oder Lidar wählen? Eine aktuelle Übersicht über die Erzielung einer robusten 3D-Objekterkennung Jan 26, 2024 am 11:18 AM

0. Vorab geschrieben&& Persönliches Verständnis, dass autonome Fahrsysteme auf fortschrittlichen Wahrnehmungs-, Entscheidungs- und Steuerungstechnologien beruhen, indem sie verschiedene Sensoren (wie Kameras, Lidar, Radar usw.) verwenden, um die Umgebung wahrzunehmen, und Algorithmen und Modelle verwenden für Echtzeitanalysen und Entscheidungsfindung. Dies ermöglicht es Fahrzeugen, Verkehrszeichen zu erkennen, andere Fahrzeuge zu erkennen und zu verfolgen, das Verhalten von Fußgängern vorherzusagen usw. und sich so sicher an komplexe Verkehrsumgebungen anzupassen. Diese Technologie erregt derzeit große Aufmerksamkeit und gilt als wichtiger Entwicklungsbereich für die Zukunft des Transportwesens . eins. Aber was autonomes Fahren schwierig macht, ist herauszufinden, wie man dem Auto klarmachen kann, was um es herum passiert. Dies erfordert, dass der dreidimensionale Objekterkennungsalgorithmus im autonomen Fahrsystem Objekte in der Umgebung, einschließlich ihrer Standorte, genau wahrnehmen und beschreiben kann.

Dieser Artikel reicht aus, um etwas über autonomes Fahren und Flugbahnvorhersage zu lesen! Dieser Artikel reicht aus, um etwas über autonomes Fahren und Flugbahnvorhersage zu lesen! Feb 28, 2024 pm 07:20 PM

Die Trajektorienvorhersage spielt eine wichtige Rolle beim autonomen Fahren. Unter autonomer Fahrtrajektorienvorhersage versteht man die Vorhersage der zukünftigen Fahrtrajektorie des Fahrzeugs durch die Analyse verschiedener Daten während des Fahrvorgangs. Als Kernmodul des autonomen Fahrens ist die Qualität der Trajektorienvorhersage von entscheidender Bedeutung für die nachgelagerte Planungssteuerung. Die Trajektorienvorhersageaufgabe verfügt über einen umfangreichen Technologie-Stack und erfordert Vertrautheit mit der dynamischen/statischen Wahrnehmung des autonomen Fahrens, hochpräzisen Karten, Fahrspurlinien, Fähigkeiten in der neuronalen Netzwerkarchitektur (CNN&GNN&Transformer) usw. Der Einstieg ist sehr schwierig! Viele Fans hoffen, so schnell wie möglich mit der Flugbahnvorhersage beginnen zu können und Fallstricke zu vermeiden. Heute werde ich eine Bestandsaufnahme einiger häufiger Probleme und einführender Lernmethoden für die Flugbahnvorhersage machen! Einführungsbezogenes Wissen 1. Sind die Vorschaupapiere in Ordnung? A: Schauen Sie sich zuerst die Umfrage an, S

SIMPL: Ein einfacher und effizienter Multi-Agent-Benchmark zur Bewegungsvorhersage für autonomes Fahren SIMPL: Ein einfacher und effizienter Multi-Agent-Benchmark zur Bewegungsvorhersage für autonomes Fahren Feb 20, 2024 am 11:48 AM

Originaltitel: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving Paper-Link: https://arxiv.org/pdf/2402.02519.pdf Code-Link: https://github.com/HKUST-Aerial-Robotics/SIMPL Autor: Hong Kong University of Science und Technologie DJI-Papieridee: Dieses Papier schlägt eine einfache und effiziente Bewegungsvorhersagebasislinie (SIMPL) für autonome Fahrzeuge vor. Im Vergleich zum herkömmlichen Agent-Cent

nuScenes' neuestes SOTA |. SparseAD: Sparse-Abfrage hilft effizientes durchgängiges autonomes Fahren! nuScenes' neuestes SOTA |. SparseAD: Sparse-Abfrage hilft effizientes durchgängiges autonomes Fahren! Apr 17, 2024 pm 06:22 PM

Vorab geschrieben und Ausgangspunkt Das End-to-End-Paradigma verwendet ein einheitliches Framework, um Multitasking in autonomen Fahrsystemen zu erreichen. Trotz der Einfachheit und Klarheit dieses Paradigmas bleibt die Leistung von End-to-End-Methoden für das autonome Fahren bei Teilaufgaben immer noch weit hinter Methoden für einzelne Aufgaben zurück. Gleichzeitig erschweren die in früheren End-to-End-Methoden weit verbreiteten Funktionen der dichten Vogelperspektive (BEV) die Skalierung auf mehr Modalitäten oder Aufgaben. Hier wird ein Sparse-Search-zentriertes End-to-End-Paradigma für autonomes Fahren (SparseAD) vorgeschlagen, bei dem die Sparse-Suche das gesamte Fahrszenario, einschließlich Raum, Zeit und Aufgaben, ohne dichte BEV-Darstellung vollständig abbildet. Insbesondere ist eine einheitliche, spärliche Architektur für die Aufgabenerkennung einschließlich Erkennung, Verfolgung und Online-Zuordnung konzipiert. Zudem schwer

Sprechen wir über End-to-End- und autonome Fahrsysteme der nächsten Generation sowie über einige Missverständnisse über End-to-End-Autonomes Fahren? Sprechen wir über End-to-End- und autonome Fahrsysteme der nächsten Generation sowie über einige Missverständnisse über End-to-End-Autonomes Fahren? Apr 15, 2024 pm 04:13 PM

Im vergangenen Monat hatte ich aus bekannten Gründen einen sehr intensiven Austausch mit verschiedenen Lehrern und Mitschülern der Branche. Ein unvermeidliches Thema im Austausch ist natürlich End-to-End und der beliebte Tesla FSDV12. Ich möchte diese Gelegenheit nutzen, einige meiner aktuellen Gedanken und Meinungen als Referenz und Diskussion darzulegen. Wie definiert man ein durchgängiges autonomes Fahrsystem und welche Probleme sollten voraussichtlich durchgängig gelöst werden? Gemäß der traditionellsten Definition bezieht sich ein End-to-End-System auf ein System, das Rohinformationen von Sensoren eingibt und für die Aufgabe relevante Variablen direkt ausgibt. Bei der Bilderkennung kann CNN beispielsweise als End-to-End bezeichnet werden, verglichen mit der herkömmlichen Methode zum Extrahieren von Merkmalen + Klassifizieren. Bei autonomen Fahraufgaben werden Eingabedaten verschiedener Sensoren (Kamera/LiDAR) benötigt

See all articles