Heim Web-Frontend js-Tutorial Verwendung von JavaScript-Funktionen zur Implementierung der Vorhersage und Klassifizierung durch maschinelles Lernen

Verwendung von JavaScript-Funktionen zur Implementierung der Vorhersage und Klassifizierung durch maschinelles Lernen

Nov 04, 2023 am 11:42 AM
javascript 函数 机器学习 预测 分类

Verwendung von JavaScript-Funktionen zur Implementierung der Vorhersage und Klassifizierung durch maschinelles Lernen

Mit der Entwicklung der Technologie der künstlichen Intelligenz ist maschinelles Lernen zu einem beliebten technischen Bereich geworden. Unter diesen ist JavaScript eine weit verbreitete Programmiersprache, und wir können ihre Funktionen verwenden, um Vorhersagen und Klassifizierungen für maschinelles Lernen zu implementieren. Schauen wir uns als Nächstes an, wie Sie JavaScript-Funktionen zur Implementierung von maschinellem Lernen verwenden.

Zuerst müssen wir eine sehr wichtige JavaScript-Bibliothek vorstellen: TensorFlow.js. Diese Bibliothek hilft uns, Modelle für maschinelles Lernen in JavaScript für Vorhersagen und Klassifizierungen zu verwenden. Bevor wir mit dem Schreiben von Code beginnen, müssen wir diese Bibliothek installieren. Sie können es mit dem folgenden Befehl installieren:

npm install @tensorflow/tfjs
Nach dem Login kopieren

Nach der Installation können wir mit dem Schreiben von JavaScript-Code beginnen.

  1. Lineare Regression durchführen

Die lineare Regression ist eine der grundlegendsten Methoden des maschinellen Lernens, die uns beim Aufbau eines linearen Modells zur Analyse der Datenbeziehungen helfen kann. In JavaScript kann die lineare Regression mithilfe der TensorFlow.js-Bibliothek implementiert werden. Hier ist ein einfaches Beispiel:

// 定义输入数据
const xs = tf.tensor([1, 2, 3, 4], [4, 1]);
const ys = tf.tensor([1, 3, 5, 7], [4, 1]);

// 定义模型和训练参数
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [1]}));
model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});

// 训练模型
model.fit(xs, ys, {epochs: 100}).then(() => {
  // 预测
  const output = model.predict(tf.tensor([5], [1, 1]));
  output.print();
});
Nach dem Login kopieren

In diesem Beispiel definieren wir die Eingabedaten und definieren ein lineares Modell mit TensorFlow.js. Zu den Trainingsparametern gehören der SGD-Optimierer und der mittlere quadratische Fehler. Nach dem Training des Modells können wir die Vorhersagefunktion verwenden, um Vorhersagen zu treffen.

  1. Bildklassifizierung

Zusätzlich zur linearen Regression können wir auch TensorFlow.js zur Bildklassifizierung verwenden. Hier ist ein einfaches Beispiel:

// 加载模型
const model = await tf.loadLayersModel('http://localhost:8000/model.json');

// 加载图像并进行预测
const img = new Image();
img.src = 'cat.jpg';
img.onload = async function() {
  const tensor = tf.browser.fromPixels(img)
      .resizeNearestNeighbor([224, 224]) // 调整图像大小
      .expandDims() // 扩展图像维度
      .toFloat() // 转换为浮点数
      .reverse(-1); // 反转通道

  const predictions = await model.predict(tensor).data();
  console.log(predictions);
}
Nach dem Login kopieren

In diesem Beispiel laden wir zunächst ein vorab trainiertes Modell und verwenden die Funktion „loadLayersModel“, um es zu laden. Anschließend haben wir ein Bild geladen und TensorFlow.js verwendet, um die Größe zu ändern, Abmessungen zu erweitern, in Floats zu konvertieren und Kanäle zu invertieren. Schließlich verwenden wir die Vorhersagefunktion, um Vorhersagen zur Bildklassifizierung zu treffen, und die Funktion console.log, um die Vorhersageergebnisse auszugeben.

Anhand dieser beiden Beispiele können wir sehen, dass es nicht schwierig ist, JavaScript-Funktionen zu verwenden, um Vorhersagen und Klassifizierungen für maschinelles Lernen zu implementieren. Natürlich ist dies nur eine Einstiegsübung. Wenn Sie mehr über maschinelles Lernen und JavaScript erfahren möchten, müssen Sie sich die entsprechenden Kenntnisse vertiefen und mehr üben.

Das obige ist der detaillierte Inhalt vonVerwendung von JavaScript-Funktionen zur Implementierung der Vorhersage und Klassifizierung durch maschinelles Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Quantilregression für probabilistische Zeitreihenprognosen Quantilregression für probabilistische Zeitreihenprognosen May 07, 2024 pm 05:04 PM

Ändern Sie nicht die Bedeutung des ursprünglichen Inhalts, optimieren Sie den Inhalt nicht, schreiben Sie den Inhalt neu und fahren Sie nicht fort. „Die Quantilregression erfüllt diesen Bedarf, indem sie Vorhersageintervalle mit quantifizierten Chancen bereitstellt. Dabei handelt es sich um eine statistische Technik zur Modellierung der Beziehung zwischen einer Prädiktorvariablen und einer Antwortvariablen, insbesondere wenn die bedingte Verteilung der Antwortvariablen von Interesse ist. Im Gegensatz zur herkömmlichen Regression Methoden: Die Quantilregression konzentriert sich auf die Schätzung der bedingten Größe der Antwortvariablen und nicht auf den bedingten Mittelwert Quantile der erklärten Variablen Y. Das bestehende Regressionsmodell ist eigentlich eine Methode zur Untersuchung der Beziehung zwischen der erklärten Variablen und der erklärenden Variablen. Sie konzentrieren sich auf die Beziehung zwischen erklärenden Variablen und erklärten Variablen

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten May 30, 2024 pm 01:24 PM

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.

Maschinelles Lernen in C++: Ein Leitfaden zur Implementierung gängiger Algorithmen für maschinelles Lernen in C++ Maschinelles Lernen in C++: Ein Leitfaden zur Implementierung gängiger Algorithmen für maschinelles Lernen in C++ Jun 03, 2024 pm 07:33 PM

In C++ umfasst die Implementierung von Algorithmen für maschinelles Lernen: Lineare Regression: Wird zur Vorhersage kontinuierlicher Variablen verwendet. Zu den Schritten gehören das Laden von Daten, das Berechnen von Gewichtungen und Verzerrungen, das Aktualisieren von Parametern und die Vorhersage. Logistische Regression: Wird zur Vorhersage diskreter Variablen verwendet. Der Prozess ähnelt der linearen Regression, verwendet jedoch die Sigmoidfunktion zur Vorhersage. Support Vector Machine: Ein leistungsstarker Klassifizierungs- und Regressionsalgorithmus, der die Berechnung von Support-Vektoren und die Vorhersage von Beschriftungen umfasst.

Vollständige Sammlung von Excel-Funktionsformeln Vollständige Sammlung von Excel-Funktionsformeln May 07, 2024 pm 12:04 PM

1. Die SUMME-Funktion wird verwendet, um die Zahlen in einer Spalte oder einer Gruppe von Zellen zu summieren, zum Beispiel: =SUMME(A1:J10). 2. Die Funktion AVERAGE wird verwendet, um den Durchschnitt der Zahlen in einer Spalte oder einer Gruppe von Zellen zu berechnen, zum Beispiel: =AVERAGE(A1:A10). 3. COUNT-Funktion, die verwendet wird, um die Anzahl der Zahlen oder Texte in einer Spalte oder einer Gruppe von Zellen zu zählen, zum Beispiel: =COUNT(A1:A10) 4. IF-Funktion, die verwendet wird, um logische Urteile auf der Grundlage spezifizierter Bedingungen zu treffen und die zurückzugeben entsprechendes Ergebnis.

See all articles