Inhaltsverzeichnis
1. Methoden zur Vorhersage großer Modellzeitreihen
Diese Methode ist eine der frühesten Arbeiten zur Vorhersage großer Modellzeitreihen.
Eine weitere Forschungsrichtung besteht darin, direkt ein großes Modell für die Zeitreihenvorhersage zu erstellen, indem man sich auf die Konstruktionsmethode für große Modelle im Bereich der Verarbeitung natürlicher Sprache bezieht
4. Zusammenfassung
Heim Technologie-Peripheriegeräte KI Ein Artikel über Zeitreihenvorhersagen unter der Welle großräumiger Modelle

Ein Artikel über Zeitreihenvorhersagen unter der Welle großräumiger Modelle

Nov 06, 2023 am 08:13 AM
领域 模型 nlp

Heute werde ich mit Ihnen über die Anwendung großer Modelle bei der Zeitreihenvorhersage sprechen. Mit der Entwicklung großer Modelle im Bereich NLP wird immer mehr versucht, große Modelle auf den Bereich der Zeitreihenvorhersage anzuwenden. In diesem Artikel werden die wichtigsten Methoden zur Anwendung großer Modelle auf die Zeitreihenvorhersage vorgestellt und einige aktuelle verwandte Arbeiten zusammengefasst, um jedem zu helfen, die Forschungsmethoden der Zeitreihenvorhersage im Zeitalter großer Modelle zu verstehen.

1. Methoden zur Vorhersage großer Modellzeitreihen

In den letzten drei Monaten sind viele Arbeiten zur Vorhersage großer Modellzeitreihen entstanden, die grundsätzlich in zwei Typen unterteilt werden können.

Umgeschriebener Inhalt: Ein Ansatz besteht darin, groß angelegte NLP-Modelle direkt für die Zeitreihenvorhersage zu verwenden. Bei dieser Methode werden große NLP-Modelle wie GPT und Llama für die Zeitreihenvorhersage verwendet. Der Schlüssel liegt darin, Zeitreihendaten in Daten umzuwandeln, die für die Eingabe großer Modelle geeignet sind. Bei dieser Art von Methode wird eine große Anzahl von Zeitreihendatensätzen verwendet, um gemeinsam ein großes Modell wie GPT oder Llama im Zeitreihenbereich zu trainieren und für nachgelagerte Zeitreihenaufgaben zu verwenden.

Für die beiden oben genannten Arten von Methoden finden Sie hier einige verwandte klassische Arbeiten zur Darstellung großer Modellzeitreihen.

2. Wenden Sie NLP-Großmodelle auf Zeitreihen an

Diese Methode ist eine der frühesten Arbeiten zur Vorhersage großer Modellzeitreihen.

Der gemeinsam von der New York University und der Carnegie Mellon University veröffentlichte Artikel „Large Language Models as Zero Samples“. Im „Time Series Predictor“ soll die digitale Darstellung der Zeitreihe tokenisiert werden, um sie in eine Eingabe umzuwandeln, die von großen Modellen wie GPT und LLaMa erkannt werden kann. Da verschiedene groß angelegte Modelle Zahlen unterschiedlich tokenisieren, ist bei der Verwendung verschiedener Modelle eine Personalisierung erforderlich. GPT teilt beispielsweise eine Zahlenfolge in verschiedene Teilsequenzen auf, was sich auf das Lernen des Modells auswirkt. Daher erzwingt dieser Artikel ein Leerzeichen zwischen Zahlen, um dem Eingabeformat von GPT Rechnung zu tragen. Bei kürzlich veröffentlichten großen Modellen wie LLaMa werden einzelne Zahlen grundsätzlich geteilt, sodass keine Leerzeichen hinzugefügt werden müssen. Um zu vermeiden, dass die Eingabesequenz aufgrund zu großer Zeitreihenwerte zu lang wird, werden im Artikel gleichzeitig einige Skalierungsvorgänge durchgeführt, um die Werte der ursprünglichen Zeitreihe auf einen vernünftigeren Bereich zu begrenzen

BilderEin Artikel über Zeitreihenvorhersagen unter der Welle großräumiger ModelleZahlenzeichen nach der obigen Verarbeitung Die Zeichenfolge wird in das große Modell eingegeben, und das große Modell sagt die nächste Zahl autoregressiv voraus und wandelt schließlich die vorhergesagte Zahl in den entsprechenden Zeitreihenwert um. Die folgende Abbildung zeigt ein schematisches Diagramm. Die Verwendung der bedingten Wahrscheinlichkeit des Sprachmodells zur Modellierung von Zahlen dient dazu, die Wahrscheinlichkeit vorherzusagen, dass die nächste Ziffer basierend auf den vorherigen Zahlen sein wird. Es handelt sich um eine iterative hierarchische Softmax-Struktur, gekoppelt mit der Darstellung Die Fähigkeit des großen Modells kann sich an eine Vielzahl von Verteilungstypen anpassen, weshalb große Modelle auf diese Weise für die Zeitreihenvorhersage verwendet werden können. Gleichzeitig kann die vom Modell vorhergesagte Wahrscheinlichkeit der nächsten Zahl auch in eine Unsicherheitsvorhersage umgewandelt werden, um eine Unsicherheitsschätzung der Zeitreihe zu erreichen.

BilderEin Artikel über Zeitreihenvorhersagen unter der Welle großräumiger ModelleIn einem anderen Artikel mit dem Titel „TIME-LLM: ZEITREIHENVORHERSAGE DURCH REPROGRAMMIERUNG GROßER SPRACHENMODELLE“ schlug der Autor eine Reprogrammierungsmethode vor, um Zeitreihen in Text umzuwandeln, um eine Ausrichtung zwischen den beiden Formen von Zeitreihen zu erreichen und Text

Die spezifische Implementierungsmethode besteht darin, die Zeitreihe zunächst in mehrere Patches zu unterteilen und jeder Patch über MLP einzubetten. Anschließend wird die Patch-Einbettung dem Wortvektor im Sprachmodell zugeordnet, um eine Zuordnung und modalübergreifende Ausrichtung von Zeitreihensegmenten und Text zu erreichen. Der Artikel schlägt die Idee eines Textprototyps vor, der mehrere Wörter einem Prototyp zuordnet, um die Semantik einer Sequenz von Patches über einen bestimmten Zeitraum darzustellen. Im folgenden Beispiel werden beispielsweise die Wörter „shot“ und „up“ roten Dreiecken zugeordnet, die Flecken kurzfristig ansteigender Teilsequenzen in der Zeitreihe entsprechen.

BilderEin Artikel über Zeitreihenvorhersagen unter der Welle großräumiger Modelle3. Großes Zeitreihenmodell

Eine weitere Forschungsrichtung besteht darin, direkt ein großes Modell für die Zeitreihenvorhersage zu erstellen, indem man sich auf die Konstruktionsmethode für große Modelle im Bereich der Verarbeitung natürlicher Sprache bezieht

Lag-Llama : Auf dem Weg zu grundlegenden Modellen für die Zeitreihenvorhersage In diesem Artikel wird das Llama-Modell in Zeitreihen erstellt. Der Kern umfasst das Design auf Funktionsebene und Modellstrukturebene.

In Bezug auf Merkmale extrahiert der Artikel Verzögerungsmerkmale mit mehreren Maßstäben und mehreren Typen, bei denen es sich hauptsächlich um statistische Werte historischer Sequenzen in verschiedenen Zeitfenstern der ursprünglichen Zeitreihe handelt. Diese Sequenzen werden als zusätzliche Merkmale in das Modell eingegeben. In Bezug auf die Modellstruktur ist Transformer der Kern der LlaMA-Struktur in NLP, in dem die Normalisierungsmethode und der Positionscodierungsteil optimiert wurden. Die endgültige Ausgabeschicht verwendet mehrere Köpfe, um die Parameter der Wahrscheinlichkeitsverteilung anzupassen. In diesem Artikel werden beispielsweise die Student-t-Verteilung und die drei entsprechenden Parameter Freiheit, Mittelwert und Skala verwendet werden ausgegeben und schließlich jedes Mal das vorhergesagte Wahrscheinlichkeitsverteilungsergebnis des Punktes erhalten.

Ein Artikel über Zeitreihenvorhersagen unter der Welle großräumiger ModelleBilder

Eine weitere ähnliche Arbeit ist TimeGPT-1, die ein GPT-Modell im Zeitreihenbereich erstellt. In Bezug auf das Datentraining verwendet TimeGPT eine große Menge an Zeitreihendaten und erreicht insgesamt 10 Milliarden Datenabtastpunkte, die verschiedene Arten von Domänendaten umfassen. Während des Trainings werden größere Batchgrößen und kleinere Lernraten verwendet, um die Trainingsrobustheit zu verbessern. Die Hauptstruktur des Modells ist das klassische GPT-Modell

Ein Artikel über Zeitreihenvorhersagen unter der Welle großräumiger ModelleBild

Aus den folgenden experimentellen Ergebnissen ist auch ersichtlich, dass dieses vorab trainierte große Zeitreihenmodell bei einigen Lernaufgaben ohne Stichprobe bessere Ergebnisse erzielt hat als das Basismodell. Deutliche Leistungsverbesserung.

Ein Artikel über Zeitreihenvorhersagen unter der Welle großräumiger ModelleBilder

4. Zusammenfassung

In diesem Artikel werden die Forschungsideen der Zeitreihenvorhersage unter der Welle großer Modelle vorgestellt. Der Gesamtprozess umfasst die direkte Verwendung großer NLP-Modelle für die Zeitreihenvorhersage und das Training großer Modelle in der Zeit Serienfeld. Unabhängig davon, welche Methode verwendet wird, zeigt sie uns das Potenzial großer Modelle + Zeitreihen und ist eine Richtung, die einer eingehenden Untersuchung würdig ist.

Das obige ist der detaillierte Inhalt vonEin Artikel über Zeitreihenvorhersagen unter der Welle großräumiger Modelle. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo May 07, 2024 pm 04:13 PM

Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

KI untergräbt die mathematische Forschung! Der Gewinner der Fields-Medaille und der chinesisch-amerikanische Mathematiker führten 11 hochrangige Arbeiten an | Gefällt mir bei Terence Tao KI untergräbt die mathematische Forschung! Der Gewinner der Fields-Medaille und der chinesisch-amerikanische Mathematiker führten 11 hochrangige Arbeiten an | Gefällt mir bei Terence Tao Apr 09, 2024 am 11:52 AM

KI verändert tatsächlich die Mathematik. Vor kurzem hat Tao Zhexuan, der diesem Thema große Aufmerksamkeit gewidmet hat, die neueste Ausgabe des „Bulletin of the American Mathematical Society“ (Bulletin der American Mathematical Society) weitergeleitet. Zum Thema „Werden Maschinen die Mathematik verändern?“ äußerten viele Mathematiker ihre Meinung. Der gesamte Prozess war voller Funken, knallhart und aufregend. Der Autor verfügt über eine starke Besetzung, darunter der Fields-Medaillengewinner Akshay Venkatesh, der chinesische Mathematiker Zheng Lejun, der NYU-Informatiker Ernest Davis und viele andere bekannte Wissenschaftler der Branche. Die Welt der KI hat sich dramatisch verändert. Viele dieser Artikel wurden vor einem Jahr eingereicht.

KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert Jun 01, 2024 pm 10:03 PM

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Apr 01, 2024 pm 07:46 PM

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera Apr 26, 2024 am 11:37 AM

Die Zielerkennung ist ein relativ ausgereiftes Problem in autonomen Fahrsystemen, wobei die Fußgängererkennung einer der ersten Algorithmen ist, die eingesetzt werden. In den meisten Arbeiten wurde eine sehr umfassende Recherche durchgeführt. Die Entfernungswahrnehmung mithilfe von Fischaugenkameras für die Rundumsicht ist jedoch relativ wenig untersucht. Aufgrund der großen radialen Verzerrung ist es schwierig, die standardmäßige Bounding-Box-Darstellung in Fischaugenkameras zu implementieren. Um die obige Beschreibung zu vereinfachen, untersuchen wir erweiterte Begrenzungsrahmen-, Ellipsen- und allgemeine Polygondesigns in Polar-/Winkeldarstellungen und definieren eine mIOU-Metrik für die Instanzsegmentierung, um diese Darstellungen zu analysieren. Das vorgeschlagene Modell „fisheyeDetNet“ mit polygonaler Form übertrifft andere Modelle und erreicht gleichzeitig 49,5 % mAP auf dem Valeo-Fisheye-Kameradatensatz für autonomes Fahren

Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! May 06, 2024 pm 04:13 PM

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

DualBEV: BEVFormer und BEVDet4D deutlich übertreffen, öffnen Sie das Buch! DualBEV: BEVFormer und BEVDet4D deutlich übertreffen, öffnen Sie das Buch! Mar 21, 2024 pm 05:21 PM

In diesem Artikel wird das Problem der genauen Erkennung von Objekten aus verschiedenen Blickwinkeln (z. B. Perspektive und Vogelperspektive) beim autonomen Fahren untersucht, insbesondere wie die Transformation von Merkmalen aus der Perspektive (PV) in den Raum aus der Vogelperspektive (BEV) effektiv ist implementiert über das Modul Visual Transformation (VT). Bestehende Methoden lassen sich grob in zwei Strategien unterteilen: 2D-zu-3D- und 3D-zu-2D-Konvertierung. 2D-zu-3D-Methoden verbessern dichte 2D-Merkmale durch die Vorhersage von Tiefenwahrscheinlichkeiten, aber die inhärente Unsicherheit von Tiefenvorhersagen, insbesondere in entfernten Regionen, kann zu Ungenauigkeiten führen. Während 3D-zu-2D-Methoden normalerweise 3D-Abfragen verwenden, um 2D-Features abzutasten und die Aufmerksamkeitsgewichte der Korrespondenz zwischen 3D- und 2D-Features über einen Transformer zu lernen, erhöht sich die Rechen- und Bereitstellungszeit.

See all articles