


OpenAI sucht Partner, um Datensätze für das Training von KI-Modellen zu generieren
Diese Seite berichtete am 10. November, dass OpenAI mit Organisationen zusammenarbeiten wird, um öffentliche/private Datensätze für das Training von KI-Modellen zu generieren. Die Datenpartnerschaft zielt darauf ab, „mehr Organisationen in die Lage zu versetzen, die Zukunft der KI zu steuern“. und „von nützlicheren Modellen profitieren“.
Diese Seite erfuhr aus einem Blog, dass OpenAI sagte: „Um KI letztendlich sicherer zu machen und der gesamten Menschheit zugute zu kommen, hoffen wir, dass KI-Modelle alle Themen, Branchen, Kulturen und Sprachen tiefgreifend verstehen können, was ein möglichst breites Spektrum an Trainingsdatenerfassung erfordert.“ .“
Im Rahmen des Datenpartnerschaftsprogramms sagt OpenAI, dass es „groß angelegte“ Datensätze sammeln wird, die „die menschliche Gesellschaft widerspiegeln“ und derzeit online nicht leicht zugänglich sind. Während das Unternehmen plant, mit mehreren Modalitäten zu arbeiten, einschließlich Bildern, Audio und Video, sucht es insbesondere nach Daten , die „menschliche Absichten zum Ausdruck bringen“ (z. B. langes Schreiben oder Konversation) in verschiedenen Sprachen, Themen und Formaten.
OpenAI sagt, dass es mit Organisationen zusammenarbeiten wird, indem es eine Kombination aus optischen Zeichenerkennungs- und automatischen Spracherkennungstools verwendet, um Trainingsdaten zu digitalisieren und bei Bedarf sensible oder persönliche Informationen zu entfernen.
OpenAI hofft, zwei Arten von Datensätzen zu erstellen: einen öffentlichen Open-Source-Datensatz, der von jedem zum Trainieren von KI-Modellen verwendet werden kann, und einen Satz privater Datensätze , der zum Trainieren proprietärer KI-Modelle verwendet werden kann.
OpenAI sagt, dass der private Satz für Organisationen gedacht ist, die ihre Daten privat halten möchten, aber möchten, dass die Modelle von OpenAI ihre Domäne besser verstehen. OpenAI hat bisher mit der isländischen Regierung und Miðeind ehf zusammengearbeitet, um die Fähigkeiten von GPT-4 für isländische Sprecher zu verbessern. und arbeitet mit dem Liberty Legal Project zusammen, um das Verständnis seines Modells für Rechtsdokumente zu verbessern.
Das obige ist der detaillierte Inhalt vonOpenAI sucht Partner, um Datensätze für das Training von KI-Modellen zu generieren. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Der Befehl centOS stilldown wird heruntergefahren und die Syntax wird von [Optionen] ausgeführt [Informationen]. Zu den Optionen gehören: -h das System sofort stoppen; -P schalten Sie die Leistung nach dem Herunterfahren aus; -r neu starten; -t Wartezeit. Zeiten können als unmittelbar (jetzt), Minuten (Minuten) oder als bestimmte Zeit (HH: MM) angegeben werden. Hinzugefügten Informationen können in Systemmeldungen angezeigt werden.

Vollständige Anleitung zur Überprüfung der HDFS -Konfiguration in CentOS -Systemen In diesem Artikel wird die Konfiguration und den laufenden Status von HDFS auf CentOS -Systemen effektiv überprüft. Die folgenden Schritte helfen Ihnen dabei, das Setup und den Betrieb von HDFs vollständig zu verstehen. Überprüfen Sie die Hadoop -Umgebungsvariable: Stellen Sie zunächst sicher, dass die Hadoop -Umgebungsvariable korrekt eingestellt ist. Führen Sie im Terminal den folgenden Befehl aus, um zu überprüfen, ob Hadoop ordnungsgemäß installiert und konfiguriert ist: Hadoopsion-Check HDFS-Konfigurationsdatei: Die Kernkonfigurationsdatei von HDFS befindet sich im/etc/hadoop/conf/verzeichnis, wobei core-site.xml und hdfs-site.xml von entscheidender Bedeutung sind. verwenden

Backup- und Wiederherstellungsrichtlinie von GitLab im Rahmen von CentOS -System Um die Datensicherheit und Wiederherstellung der Daten zu gewährleisten, bietet GitLab on CentOS eine Vielzahl von Sicherungsmethoden. In diesem Artikel werden mehrere gängige Sicherungsmethoden, Konfigurationsparameter und Wiederherstellungsprozesse im Detail eingeführt, um eine vollständige GitLab -Sicherungs- und Wiederherstellungsstrategie aufzubauen. 1. Manuell Backup Verwenden Sie den GitLab-RakegitLab: Backup: Befehl erstellen, um die manuelle Sicherung auszuführen. Dieser Befehl unterstützt wichtige Informationen wie GitLab Repository, Datenbank, Benutzer, Benutzergruppen, Schlüssel und Berechtigungen. Die Standardsicherungsdatei wird im Verzeichnis/var/opt/gitlab/backups gespeichert. Sie können /etc /gitlab ändern

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Die Installation von MySQL auf CentOS umfasst die folgenden Schritte: Hinzufügen der entsprechenden MySQL Yum -Quelle. Führen Sie den Befehl mySQL-server aus, um den MySQL-Server zu installieren. Verwenden Sie den Befehl mySQL_SECURE_INSTALLATION, um Sicherheitseinstellungen vorzunehmen, z. B. das Festlegen des Stammbenutzerkennworts. Passen Sie die MySQL -Konfigurationsdatei nach Bedarf an. Tune MySQL -Parameter und optimieren Sie Datenbanken für die Leistung.

Eine vollständige Anleitung zum Anzeigen von GitLab -Protokollen unter CentOS -System In diesem Artikel wird in diesem Artikel verschiedene GitLab -Protokolle im CentOS -System angezeigt, einschließlich Hauptprotokolle, Ausnahmebodi und anderen zugehörigen Protokollen. Bitte beachten Sie, dass der Log -Dateipfad je nach GitLab -Version und Installationsmethode variieren kann. Wenn der folgende Pfad nicht vorhanden ist, überprüfen Sie bitte das GitLab -Installationsverzeichnis und die Konfigurationsdateien. 1. Zeigen Sie das Hauptprotokoll an. Verwenden Sie den folgenden Befehl, um die Hauptprotokolldatei der GitLabRails-Anwendung anzuzeigen: Befehl: Sudocat/var/log/gitlab/gitlab-rails/production.log Dieser Befehl zeigt das Produkt an

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort
