


Datengesteuerte Diagnose mithilfe von Deep-Learning-Methoden zur Glaukomerkennung
Das Glaukom ist bei vielen Menschen auf der ganzen Welt eine der Hauptursachen für irreversible Blindheit. Glaukom ist ein Überbegriff für eine Gruppe von Augenerkrankungen, die die Verbindung zwischen Auge und Sehnerv im Gehirn schädigen, was in schweren Fällen zu Sehverlust führen kann. Laut einer systematischen Überprüfung und eingehenden Analyse der globalen Ursachen von Blindheit und Beeinträchtigung der Weitsichtigkeit durch das Brian Holden Vision Institute ist das Glaukom zur zweithäufigsten Blindheitsursache weltweit geworden. Schätzungsweise 76 Millionen Menschen weltweit werden davon betroffen sein im Jahr 2020 an einem Glaukom erkrankt sind. Es wird erwartet, dass diese Zahl im Jahr 2040 auf 111,8 Millionen ansteigt. Die zunehmende Prävalenz des Glaukoms wird erhebliche wirtschaftliche Auswirkungen auf das Gesundheitssystem und den einzelnen Patienten haben. Leider weisen herkömmliche Glaukom-Diagnose- und Erkennungstechniken in der klinischen Praxis erhebliche Einschränkungen auf. Es wird jedoch erwartet, dass der Einsatz von künstlicher Intelligenz (KI) und Deep-Learning-Algorithmen (DL) im Gesundheitswesen die Diagnose und das Screening von Glaukomen verbessern wird.
Wie trägt künstliche Intelligenz zur Diagnose von Augenkrankheiten bei?Das Forschungsteam der Nanjing Medical University in China hat in einem kürzlich veröffentlichten Artikel den Prozess der Verwendung künstlicher Intelligenz und Deep-Learning-basierter Algorithmen zur Diagnose von Augenerkrankungen ausführlich erläutert und veranschaulicht Flussdiagramm für Deep-Learning-Modelle.
Im Allgemeinen erfordert der Einsatz von KI-Technologie zur Diagnose eines Glaukoms eine sorgfältige Verarbeitung einer Vielzahl von Daten, einschließlich Fotos des Sehnervenkopfes, des Gesichtsfelds und des Augeninnendrucks. Der Algorithmus eliminiert Rauschen, Artefakte und irrelevante Informationen, um genaue und zuverlässige Ergebnisse zu gewährleisten, und trainiert gleichzeitig das Modell, um die einzigartigen Merkmale und Muster im Zusammenhang mit Glaukom zu lernen. Während der Validierungsphase wird es strengen Tests unterzogen, um seine Wirksamkeit sicherzustellen. Nach Erfolg wird das gesamte Protokoll in nachfolgenden Tests weiter evaluiert, um die Machbarkeit einer praktischen Anwendung in der klinischen Diagnose zu untersuchen.
Wenn dieser Algorithmus irgendwann in der klinischen Praxis angewendet werden kann, werden zukünftige Kliniker Indikatoren wie Papillenfotos, Gesichtsfelder und Augeninnendruckwerte der Patienten sammeln und den Algorithmus nach der Vorverarbeitung zur Diagnose von Glaukomläsionen verwenden.
Deep Learning in Rolle des Glaukoms bei der Diagnose
Eine wichtige Rolle des Deep Learning bei der Glaukomdiagnose besteht darin, an Glaukom erkrankte Augen von gesunden Augen zu untersuchen und zu unterscheiden. Ein anhand von Fundusfotos trainiertes Deep-Learning-Modell kann Fundusläsionen identifizieren, die auf ein Glaukom hinweisen, einschließlich Anomalien der Nervenfaserschicht der Netzhaut. Dies hilft, ein Glaukom früher zu diagnostizieren und das Risiko einer Sehbehinderung zu verringern. Darüber hinaus können Daten der optischen Kohärenztomographie (OCT) verwendet werden, um Deep-Learning-Algorithmen zu trainieren, um die Entwicklung mikrostruktureller Veränderungen, die durch Glaukom verursacht werden, im Laufe der Zeit zu erkennen und zu verfolgen. Laut Untersuchungen der Wake Forest School of Medicine in North Carolina haben Experimente bewiesen, dass die Genauigkeit von Streaming-Lernalgorithmen manuelle oder automatische Segmentierungsmethoden bei der Früherkennung von Glaukomsymptomen übertrifft Die Deep-Learning-Technologie ist in der Lage, Glaukomläsionen in Fundusbildbereichen jenseits des Sehnervenkopfes (ONH) zu erkennen. Mit anderen Worten: Deep Learning hat große Aussichten auf eine breite klinische Anwendung bei der computergestützten Glaukom-Screening- und -Diagnose. Die Technologie ermöglicht außerdem eine umfassende Beurteilung der Netzhaut und hilft Ärzten dabei, verschiedene frühe Anzeichen eines Glaukoms zu erkennen, die andernfalls möglicherweise unbemerkt bleiben würden.Die Vorteile von künstlicher Intelligenz und Deep Learning in der Diagnose
Das Duke Eye Center an der Duke University untersucht die Vorteile der Verwendung hochentwickelter Deep-Learning-Algorithmen für die Glaukomdiagnose. Sie fanden heraus, dass diese Algorithmen Krankheiten viel schneller diagnostizieren können als herkömmliche Methoden, was die Effizienz erheblich verbessert und die Behandlung beschleunigt. Darüber hinaus sind diese Algorithmen genauer als herkömmliche Methoden und ermöglichen eine frühzeitige Erkennung und Intervention, um das Fortschreiten der Krankheit wirksam zu verhindern. All dies wird die Patientenergebnisse verbessern und die damit verbundenen medizinischen Kosten für Folgebehandlungen senken. Deep-Learning-Algorithmen haben ein großes Potenzial für die Ausweitung der medizinischen Versorgung, insbesondere für diejenigen, die in abgelegenen Gebieten leben und für die breite Masse keinen Zugang zu Augenärzten haben. Diese Algorithmen können diesen Patienten helfen, zeitnahe und genaue Diagnosedienste zu erhalten, Diagnose- und Behandlungsergebnisse zu verbessern und die Lücke in der medizinischen Versorgung zu schließen. Mit anderen Worten: Diese Algorithmen werden die Augenpflege für Menschen auf der ganzen Welt gerechter machenDarüber hinaus können medizinische Fachkräfte auch Deep-Learning-Algorithmen verwenden, um die Kontrolle über diagnostische Schwankungen zu maximieren und zuverlässigere und genauere Beurteilungsergebnisse zu liefern. Dies trägt dazu bei, das Vertrauen in die Genauigkeit medizinischer Diagnosen zu stärken und gleichzeitig die Ergebnisse der Patientenversorgung zu verbessern.
Herausforderungen bei der Einführung von Deep Learning in der klinischen Praxis
Obwohl in Experimenten gute Ergebnisse erzielt wurden, gibt es immer noch eine Reihe praktischer Herausforderungen, die bei der Verwendung von Deep-Learning-Algorithmen zur Glaukomerkennung in der klinischen Praxis gelöst werden müssen
Neu geschrieben Inhalt: Eine der größten Herausforderungen ist die Standardisierung der für das Algorithmentraining verwendeten Datensätze. Da es oft große Unterschiede bei den Datenerfassungstechnologien und -formaten gibt, die von verschiedenen Forschungseinrichtungen und medizinischen Einrichtungen verwendet werden, ist es notwendig, einen standardisierten Datensatz speziell für das Training von Glaukom-Diagnosealgorithmen zu erstellen
Für andere Themen als die Datenstandardisierung ist das Wie eine weitere große Herausforderung um sicherzustellen, dass Gesundheitsdienstleister diese Algorithmen problemlos übernehmen können. Trotz des großen Potenzials zur Glaukomerkennung sind die Algorithmen selbst oft komplex in der Bereitstellung und Verwendung und nicht für alle medizinischen Fachkräfte geeignet, insbesondere nicht für diejenigen in abgelegenen oder unterversorgten Gebieten. Daher müssen benutzerfreundliche Schnittstellen und Tools entwickelt werden, um sicherzustellen, dass Gesundheitsdienstleister mit unterschiedlichem Hintergrund und Standort Deep-Learning-Algorithmen effektiv nutzen können, um die an Glaukom erkrankte Zielgruppe erfolgreich zu erkennen und den Patienten eine glänzende Zukunft zu bieten. Die Zukunft von
Glaukom ist eine wichtige Krankheit, die weltweit zu Blindheit und Behinderung führt. Ihre Prävalenz wird in den kommenden Jahren weiter zunehmen, mit erheblichen Auswirkungen auf das Gesundheitssystem und den einzelnen Patienten. Dementsprechend wird erwartet, dass die Entwicklung und Popularisierung von KI- und Deep-Learning-Algorithmen im medizinischen Versorgungsbereich die diagnostische Effizienz und Erkennungsgenauigkeit von Glaukomen erheblich verbessern wird. Diese Algorithmen können schnellere und zuverlässigere diagnostische Schlussfolgerungen liefern, den Zugang zu Diagnose- und Behandlungsressourcen für unterversorgte Bevölkerungsgruppen verbessern und große Schwankungen bei den Diagnoseergebnissen reduzieren.
Bevor Deep-Learning-Algorithmen in großem Umfang bei der klinischen Glaukomerkennung eingesetzt werden können, müssen wir zunächst eine Reihe realer Herausforderungen lösen. Eine der Herausforderungen besteht darin, sich auf die Datenstandardisierung zu konzentrieren, eine andere darin, die Zugänglichkeit von Diensten zu verbessern. Solange wir diese Herausforderungen richtig angehen können, wird erwartet, dass Deep-Learning-Algorithmen in der klinischen Praxis umfassend und genau angewendet werden und den Weg für die Früherkennung und Behandlung von Glaukom ebnenDas obige ist der detaillierte Inhalt vonDatengesteuerte Diagnose mithilfe von Deep-Learning-Methoden zur Glaukomerkennung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber | Rettichhaut Seit der Veröffentlichung des leistungsstarken AlphaFold2 im Jahr 2021 verwenden Wissenschaftler Modelle zur Proteinstrukturvorhersage, um verschiedene Proteinstrukturen innerhalb von Zellen zu kartieren, Medikamente zu entdecken und eine „kosmische Karte“ jeder bekannten Proteininteraktion zu zeichnen. Gerade hat Google DeepMind das AlphaFold3-Modell veröffentlicht, das gemeinsame Strukturvorhersagen für Komplexe wie Proteine, Nukleinsäuren, kleine Moleküle, Ionen und modifizierte Reste durchführen kann. Die Genauigkeit von AlphaFold3 wurde im Vergleich zu vielen dedizierten Tools in der Vergangenheit (Protein-Ligand-Interaktion, Protein-Nukleinsäure-Interaktion, Antikörper-Antigen-Vorhersage) deutlich verbessert. Dies zeigt, dass dies innerhalb eines einzigen einheitlichen Deep-Learning-Frameworks möglich ist
