


Allgemeine Lösung für unbeaufsichtigte Lernprobleme: ein auf Metaalgorithmen basierendes Framework
Forscher von Microsoft Research und der Princeton University haben am 13. November einen allgemeinen Rahmen für den Entwurf effizienter Algorithmen für unüberwachte Lernprobleme vorgeschlagen, beispielsweise eine Mischung aus Gaußscher Verteilung und Subraum-Clustering.
Metaalgorithmus zur Lösung des Rauschproblems, der die Berechnungsmethode der Lernberechnungsformel für die untere Grenze verwendet. Dieses Framework basiert auf der jüngsten Arbeit von Garg, Kayal und Saha (FOCS'20), die dieses Framework zum Lernen arithmetischer Formeln ohne Rauschen vorgeschlagen haben. Ein Schlüsselelement des Metaalgorithmus ist ein effizienter Algorithmus zur Lösung eines neuen Problems namens „robuste Vektorraumzerlegung“.
Untersuchungen haben gezeigt, dass der Metaalgorithmus gut funktioniert, wenn eine Matrix ein ausreichend großes Minimum ungleich Null hat Wert gut. „Wir vermuten, dass diese Bedingung für geglättete Instanzen unseres Problems gilt, und daher wird unser Framework effiziente Algorithmen für diese Probleme in glatten Umgebungen liefern.“ in the Presence of Noise: A General Framework and Applications to Unsupervised Learning, veröffentlicht am 13. November auf der arXiv-Preprint-Plattform .
Hier betrachten Forscher Daten, die eine gute mathematische Struktur haben oder aus einer mathematisch wohldefinierten Verteilung generiert werden. Ein Beispiel für Ersteres ist, dass Datenpunkte auf der Grundlage bestimmter Ähnlichkeitsmuster in sinnvolle Cluster gruppiert werden können und das Ziel darin besteht, die zugrunde liegenden Cluster zu finden. Ein Beispiel für Letzteres ist die Mischungsmodellierung, bei der davon ausgegangen wird, dass Daten durch eine Mischung prägnant beschriebener Wahrscheinlichkeitsverteilungen (z. B. Gauß-Verteilungen) generiert werden und das Ziel darin besteht, die Parameter dieser Verteilungen aus Stichproben zu lernen.
Ein gängiger Rahmen zur Lösung vieler Probleme des unbeaufsichtigten Lernens ist die Momentenmethode, die die statistischen Momente der Daten nutzt, um auf die zugrunde liegende Struktur oder die zugrunde liegenden Parameter des Modells zu schließen. Bei vielen Problemszenarien des unbeaufsichtigten Lernens, bei denen die zugrunde liegenden Daten eine schöne mathematische Struktur haben, sind die Momente der Daten genau definierte Funktionen der Parameter. Heuristische Argumente zeigen, dass im Allgemeinen das Gegenteil gelten sollte, d. h. die Parameter einer Struktur/Verteilung werden normalerweise eindeutig durch einige Momente niedriger Ordnung der Daten bestimmt. In dieser allgemeinen Richtung besteht die größte Herausforderung darin, Algorithmen zu entwerfen, um die zugrunde liegenden Parameter (annähernd) aus (empirischen) Momenten wiederherzustellen.
Wir möchten außerdem, dass der Algorithmus effizient, rauschtolerant (d. h. er funktioniert auch dann gut, wenn die Momente nur ungefähr und nicht genau bekannt sind) und sogar anomalietolerant (d. h. selbst dann, wenn einige Datenpunkte dies nicht wissen). passt auch gut zur zugrunde liegenden Struktur/Verteilung. Aber selbst die einfachsten Probleme auf diesem Gebiet neigen dazu, NP-schwer zu sein, und bleiben es auch dann, wenn kein Rauschen und Ausreißer vorhanden sind.
Man kann also eigentlich keinen Algorithmus mit nachweisbaren Worst-Case-Garantien erwarten. Man kann jedoch hoffen, dass der Algorithmus im Allgemeinen garantiert gut funktioniert, d. h. für zufällige Probleminstanzen oder idealer für reibungslos ausgewählte Instanzen. Daher wurden für jedes dieser Probleme beim unbeaufsichtigten Lernen viele verschiedene Algorithmen mit unterschiedlichem Wirkungsgrad, Rauschtoleranz, Ausreißertoleranz und nachweisbaren Garantien entwickelt.
In dieser Arbeit präsentieren die Forscher einen Meta-Algorithmus, der auf viele solcher unbeaufsichtigten Lernprobleme anwendbar ist. Der Ausgangspunkt dieser Studie ist die Beobachtung, dass viele dieser Probleme auf die Aufgabe hinauslaufen, geeignete Unterklassen arithmetischer Formeln zu lernen.
Das obige ist der detaillierte Inhalt vonAllgemeine Lösung für unbeaufsichtigte Lernprobleme: ein auf Metaalgorithmen basierendes Framework. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

01Ausblicksübersicht Derzeit ist es schwierig, ein angemessenes Gleichgewicht zwischen Detektionseffizienz und Detektionsergebnissen zu erreichen. Wir haben einen verbesserten YOLOv5-Algorithmus zur Zielerkennung in hochauflösenden optischen Fernerkundungsbildern entwickelt, der mehrschichtige Merkmalspyramiden, Multierkennungskopfstrategien und hybride Aufmerksamkeitsmodule verwendet, um die Wirkung des Zielerkennungsnetzwerks in optischen Fernerkundungsbildern zu verbessern. Laut SIMD-Datensatz ist der mAP des neuen Algorithmus 2,2 % besser als YOLOv5 und 8,48 % besser als YOLOX, wodurch ein besseres Gleichgewicht zwischen Erkennungsergebnissen und Geschwindigkeit erreicht wird. 02 Hintergrund und Motivation Mit der rasanten Entwicklung der Fernerkundungstechnologie wurden hochauflösende optische Fernerkundungsbilder verwendet, um viele Objekte auf der Erdoberfläche zu beschreiben, darunter Flugzeuge, Autos, Gebäude usw. Objekterkennung bei der Interpretation von Fernerkundungsbildern

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S
