Inhaltsverzeichnis
5. Random Forest Regression
10. Lokale gewichtete lineare Regression
Heim Technologie-Peripheriegeräte KI Häufig verwendete Regressionsalgorithmen und ihre Eigenschaften in Anwendungen des maschinellen Lernens

Häufig verwendete Regressionsalgorithmen und ihre Eigenschaften in Anwendungen des maschinellen Lernens

Nov 29, 2023 pm 05:29 PM
机器学习 统计学

Regression ist eines der leistungsfähigsten Werkzeuge in der Statistik. Überwachte Lernalgorithmen werden in zwei Typen unterteilt: Klassifizierungsalgorithmen und Regressionsalgorithmen. Der Regressionsalgorithmus wird für die Vorhersage kontinuierlicher Verteilungen verwendet und kann kontinuierliche Daten und nicht nur diskrete Kategoriebezeichnungen vorhersagen.

Die Regressionsanalyse wird häufig im Bereich des maschinellen Lernens verwendet, z. B. zur Vorhersage von Produktverkäufen, Verkehrsströmen, Immobilienpreisen, Wetterbedingungen usw.

Der Regressionsalgorithmus ist ein häufig verwendeter Algorithmus für maschinelles Lernen, mit dem die Beziehung zwischen unabhängigen Personen hergestellt wird Variable X und die abhängige Variable Y Beziehung. Aus Sicht des maschinellen Lernens wird es zum Erstellen eines Algorithmusmodells (einer Funktion) verwendet, um die Zuordnungsbeziehung zwischen Attribut X und Beschriftung Y zu erreichen. Während des Lernprozesses versucht der Algorithmus, die beste Parameterbeziehung zu finden, damit die Anpassung am besten ist

Im Regressionsalgorithmus ist das Endergebnis des Algorithmus (Funktion) ein kontinuierlicher Datenwert. Der Eingabewert (Attributwert) ist ein d-dimensionales Attribut/einen numerischen Vektor.

Einige häufig verwendete Regressionsalgorithmen umfassen lineare Regression, Polynomregression, Entscheidungsbaumregression, Ridge-Regression, Lasso-Regression, ElasticNet-Regression usw.

Dieser Artikel wird Stellen Sie einige gängige Regressionsalgorithmen und ihre jeweiligen Eigenschaften vor

Entscheidungsbaum-Regression

  • Random Der Wald ist zurück
  • LASSO ist zurück
  • Ridge ist zurück
  • ElasticNet ist zurück
  • XGBoost ist zurück
  • Lokal gewichtet Lineare Regression
  • Eins: Lineare Regression
  • Lineare Regression ist oft der erste Algorithmus, den Menschen über maschinelles Lernen und Datenwissenschaft lernen. Die lineare Regression ist ein lineares Modell, das eine lineare Beziehung zwischen einer Eingabevariablen (X) und einer einzelnen Ausgabevariablen (y) annimmt. Im Allgemeinen gibt es zwei Situationen:
  • Univariate lineare Regression ist eine Modellierungsmethode zur Analyse der Beziehung zwischen einer einzelnen Eingabevariablen (d. h. einer einzelnen Merkmalsvariablen) und einer einzelnen Ausgabevariablen
  • Multivariable lineare Regression (auch wird als multiple lineare Regression bezeichnet): Sie modelliert die Beziehung zwischen mehreren Eingabevariablen (mehreren Merkmalsvariablen) und einer einzelnen Ausgabevariablen.
  • Ein paar wichtige Punkte zur linearen Regression:
  • Schnell und einfach zu modellieren

Sie ist besonders nützlich, wenn die Beziehung, die Sie modellieren möchten, nicht sehr komplex ist und Sie nicht viele davon haben Daten.

Sehr intuitives Verständnis und Erklärung.

Es reagiert sehr empfindlich auf Ausreißer.

2. Polynomielle Regression

Wenn wir ein Modell für nichtlineare trennbare Daten erstellen möchten, ist die polynomielle Regression eine der beliebtesten Optionen. Sie ähnelt der linearen Regression, nutzt jedoch die Beziehung zwischen den Variablen X und Y, um den besten Weg zum Zeichnen einer Kurve zu finden, die zu den Datenpunkten passt.

  • Ein paar wichtige Punkte zur polynomialen Regression:
  • ist in der Lage, nichtlineare trennbare Daten zu modellieren; die lineare Regression kann dies nicht. Im Allgemeinen ist es flexibler und kann einige ziemlich komplexe Beziehungen modellieren.
  • Volle Kontrolle über die Modellierung von Feature-Variablen (einzustellende Exponenten).
  • Erfordert sorgfältiges Design. Um den besten Index auszuwählen, sind einige Datenkenntnisse erforderlich.

Wenn der Index nicht richtig ausgewählt wird, kann es leicht zu einer Überanpassung kommen.

3. Support-Vektor-Maschinen-Regression

Support-Vektor-Maschinen sind bei Klassifizierungsproblemen bekannt. Die Verwendung von SVM bei der Regression wird Support Vector Regression (SVR) genannt. Scikit-learn hat diese Methode in SVR() integriert.

  • Einige wichtige Punkte zur Support-Vektor-Regression:
  • Sie ist robust gegenüber Ausreißern und effektiv im hochdimensionalen Raum.
  • Sie verfügt über eine ausgezeichnete Generalisierungsfähigkeit (Fähigkeit, sich korrekt an Neues, bisher Ungesehenes anzupassen Daten)
Wenn die Anzahl der Merkmale viel größer als die Anzahl der Stichproben ist, kommt es leicht zu einer Überanpassung

4. Entscheidungsbaum-Regression

Der Entscheidungsbaum ist eine Methode zur nichtparametrischen Klassifizierung und Regression überwachte Lernmethode. Das Ziel besteht darin, ein Modell zu erstellen, das den Wert einer Zielvariablen vorhersagt, indem es einfache Entscheidungsregeln lernt, die aus Datenmerkmalen abgeleitet werden. Ein Baum kann als stückweise konstante Näherung betrachtet werden.

Häufig verwendete Regressionsalgorithmen und ihre Eigenschaften in Anwendungen des maschinellen Lernens

Ein paar wichtige Punkte zu Entscheidungsbäumen:

  • Einfach zu verstehen und zu erklären. Bäume können visualisiert werden.
  • Gilt sowohl für kategoriale als auch für kontinuierliche Werte
  • Die Kosten für die Verwendung von DT (d. h. Vorhersagedaten) sind logarithmisch zur Anzahl der Datenpunkte, die zum Trainieren des Baums verwendet werden.
  • Vorhersagen aus Entscheidungsbäumen sind weder glatt noch kontinuierlich (Wie in der Abbildung oben gezeigt, handelt es sich um eine stückweise konstante Näherung)

5. Random Forest Regression

Random Forest Regression und Entscheidungsbaumregression sind grundsätzlich sehr ähnlich. Es handelt sich um einen Metaschätzer, der mehrere Entscheidungsbäume an verschiedene Teilstichproben des Datensatzes anpassen und diese mitteln kann, um die Vorhersagegenauigkeit zu verbessern und Überanpassungen zu kontrollieren besser bei Klassifizierungsproblemen) aufgrund subtiler Über- und Unteranpassungs-Kompromisse, die dem Baumkonstruktionsalgorithmus innewohnen.

Es funktioniert auch für kategoriale und kontinuierliche Werte.

Erfordert viel Rechenleistung und Ressourcen, da viele Entscheidungsbäume zur Kombination ihrer Ausgaben passen.

6. LASSO-Regression
  • LASSO-Regression ist eine Variante der linearen Schrumpfungsregression. Beim Schrumpfen werden Datenwerte im Durchschnitt auf einen Mittelpunkt reduziert. Diese Art der Regression ist ideal für Modelle mit schwerer Multikollinearität (hohe Korrelation zwischen Merkmalen)
  • Ein paar Punkte zur Lasso-Regression:

Sie wird am häufigsten verwendet, um automatische Variablen zu eliminieren und Merkmale auszuwählen .

Es ist ideal für Modelle, die eine starke Multikollinearität aufweisen (Merkmale sind stark miteinander korreliert). Häufig verwendete Regressionsalgorithmen und ihre Eigenschaften in Anwendungen des maschinellen Lernens

LASSO-Regression nutzt L1-Regularisierung

LASSO-Regression gilt als besser als Ridge, da sie nur einige Features auswählt und die Koeffizienten anderer Features auf Null reduziert.
  • 7. Ridge-Regression
  • Die Ridge-Regression ist der LASSO-Regression sehr ähnlich, da beide Techniken Schrumpfungsmethoden verwenden. Sowohl die Ridge- als auch die LASSO-Regression eignen sich gut für Modelle mit schwerwiegenden Multikollinearitätsproblemen (d. h. hoher Korrelation zwischen Merkmalen). Der Hauptunterschied zwischen ihnen besteht darin, dass Ridge L2-Regularisierung verwendet, was bedeutet, dass keiner der Koeffizienten wie bei der LASSO-Regression auf Null (aber nahe Null) geht
  • Ein paar Punkte zur Ridge-Regression:

Es ist ideal für Modelle, die eine starke Multikollinearität aufweisen (Merkmale sind stark miteinander korreliert).

Ridge-Regression verwendet L2-Regularisierung. Merkmale, die einen geringeren Beitrag leisten, weisen Koeffizienten nahe Null auf. Häufig verwendete Regressionsalgorithmen und ihre Eigenschaften in Anwendungen des maschinellen Lernens

Ridge-Regression gilt aufgrund der Art der L2-Regularisierung als schlimmer als LASSO.

8. ElasticNet-Regression
  • ElasticNet ist ein weiteres lineares Regressionsmodell, das mithilfe der L1- und L2-Regularisierung trainiert wird. Es ist eine Mischung aus Lasso- und Ridge-Regressionstechniken und eignet sich daher auch gut für Modelle, die eine starke Multikollinearität aufweisen (Merkmale sind stark miteinander korreliert).
  • Beim Abwägen zwischen Lasso und Ridge besteht ein praktischer Vorteil darin, dass Elastic-Net einen Teil der Stabilität von Ridge unter Rotation erben kann.
  • 9 wirkungsvoll umgesetzt. Gradient Boosting ist eine Art Ensemble-Algorithmus für maschinelles Lernen, der für Klassifizierungs- oder Regressionsprobleme verwendet werden kann.
Der Algorithmus ist so konzipiert, dass er effizient und recheneffizient ist

Ein paar Punkte zu XGBoost:

  • XGBoost funktioniert bei spärlichen und unstrukturierten Daten nicht gut.
  • Der Algorithmus ist so konzipiert, dass er recheneffizient und effizient ist, aber die Trainingszeit ist für große Datensätze immer noch recht lang.
  • Es reagiert empfindlich auf Ausreißer.

10. Lokale gewichtete lineare Regression

In der lokalen gewichteten linearen Regression (lokale gewichtete lineare Regression) führen wir auch eine lineare Regression durch. Im Gegensatz zur gewöhnlichen linearen Regression ist die lokal gewichtete lineare Regression jedoch eine lokale lineare Regressionsmethode. Durch die Einführung von Gewichten (Kernelfunktionen) werden bei der Vorhersage nur einige Stichproben verwendet, die nahe an den Testpunkten liegen, um die Regressionskoeffizienten zu berechnen. Bei der gewöhnlichen linearen Regression handelt es sich um eine globale lineare Regression, bei der alle Stichproben zur Berechnung von Regressionskoeffizienten verwendet werden ist erforderlich. Wenn die multiple lineare Regression zu einer Überanpassung führt, können Sie die lokale Gewichtung des Gaußschen Kernels ausprobieren, um eine Überanpassung zu verhindern.

11. Bayesianische Ridge-RegressionDas mit der Bayesianischen Inferenzmethode gelöste lineare Regressionsmodell wird Bayesianische lineare Regression genannt Berechnen Sie den Posterior aus dem Prior. Die Bayes'sche lineare Regression kann mit numerischen Methoden gelöst werden, und unter bestimmten Bedingungen können auch Posterior- oder verwandte Statistiken in analytischer Form erhalten werden.

Die Bayes'sche lineare Regression verfügt über die grundlegenden Eigenschaften bayes'scher statistischer Modelle und kann nach Gewichtskoeffizienten und Wahrscheinlichkeitsdichtefunktionen aufgelöst werden , Online-Lernen und Testen von Modellhypothesen basierend auf dem Bayes-Faktor (Bayes-Faktor)

Vorteile und Nachteile und anwendbare Szenarien

Der Vorteil der Bayes'schen Regression ist ihre Datenanpassungsfähigkeit, sie kann Daten wiederverwenden und eine Überanpassung verhindern. Im Schätzprozess können Regularisierungsterme eingeführt werden. Durch die Einführung des L2-Regularisierungsterms kann beispielsweise die Bayes'sche Ridge-Regression realisiert werden. Der Nachteil besteht darin, dass der Lernprozess zu teuer ist. Wenn die Anzahl der Features weniger als 10 beträgt, können Sie die Bayes'sche Regression ausprobieren.

Das obige ist der detaillierte Inhalt vonHäufig verwendete Regressionsalgorithmen und ihre Eigenschaften in Anwendungen des maschinellen Lernens. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

15 empfohlene kostenlose Open-Source-Bildanmerkungstools 15 empfohlene kostenlose Open-Source-Bildanmerkungstools Mar 28, 2024 pm 01:21 PM

Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Apr 29, 2024 pm 06:50 PM

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Apr 12, 2024 pm 05:55 PM

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Apr 29, 2024 pm 03:25 PM

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

See all articles