MySQL下的RAND()优化案例分析_MySQL
众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行。事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和执行耗时。
首先,看下建表DDL,这是一个没有显式自增主键的InnoDB表:
[yejr@imysql]> show create table t_innodb_random\G *************************** 1. row *************************** Table: t_innodb_random Create Table: CREATE TABLE `t_innodb_random` ( `id` int(10) unsigned NOT NULL, `user` varchar(64) NOT NULL DEFAULT '', KEY `idx_id` (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1
往这个表里灌入一些测试数据,至少10万以上, id 字段也是乱序的。
[yejr@imysql]> select count(*) from t_innodb_random\G *************************** 1. row *************************** count(*): 393216
1、常量等值检索:
[yejr@imysql]> explain select id from t_innodb_random where id = 13412\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t_innodb_random type: ref possible_keys: idx_id key: idx_id key_len: 4 ref: const rows: 1 Extra: Using index
[yejr@imysql]> select id from t_innodb_random where id = 13412; 1 row in set (0.00 sec)
可以看到执行计划很不错,是常量等值查询,速度非常快。
2、使用RAND()函数乘以常量,求得随机数后检索:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*13241324)\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index
[yejr@imysql]> select id from t_innodb_random where id = round(rand()*13241324)\G Empty set (0.26 sec)
可以看到执行计划很糟糕,虽然是只扫描索引,但是做了全索引扫描,效率非常差。因为WHERE条件中包含了RAND(),使得MySQL把它当做变量来处理,无法用常量等值的方式查询,效率很低。
我们把常量改成取t_innodb_random表的最大id值,再乘以RAND()求得随机数后检索看看什么情况:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 2 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G Empty set (0.27 sec)
可以看到,执行计划依然是全索引扫描,执行耗时也基本相当。
3、改造成普通子查询模式 ,这里有两次子查询
[yejr@imysql]> explain select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G Empty set (0.27 sec)
可以看到,执行计划也不好,执行耗时较慢。
4、改造成JOIN关联查询,不过最大值还是用常量表示
[yejr@imysql]> explain select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: <derived2> type: system possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 1 Extra: *************************** 2. row *************************** id: 1 select_type: PRIMARY table: t1 type: ref possible_keys: idx_id key: idx_id key_len: 4 ref: const rows: 1 Extra: Using where; Using index *************************** 3. row *************************** id: 2 select_type: DERIVED table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: No tables used
[yejr@imysql]> select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G Empty set (0.00 sec)
这时候执行计划就非常完美了,和最开始的常量等值查询是一样的了,执行耗时也非常之快。
这种方法虽然很好,但是有可能查询不到记录,改造范围查找,但结果LIMIT 1就可以了:
[yejr@imysql]> explain select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G *************************** 1. row *************************** id: 1301 1 row in set (0.00 sec)
可以看到,虽然执行计划也是全索引扫描,但是因为有了LIMIT 1,只需要找到一条记录,即可终止扫描,所以效率还是很快的。
小结:
从数据库中随机取一条记录时,可以把RAND()生成随机数放在JOIN子查询中以提高效率。
5、再来看看用ORDRR BY RAND()方式一次取得多个随机值的方式:
[yejr@imysql]> explain select id from t_innodb_random order by rand() limit 1000\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using index; Using temporary; Using filesort
[yejr@imysql]> select id from t_innodb_random order by rand() limit 1000; 1000 rows in set (0.41 sec)
全索引扫描,生成排序临时表,太差太慢了。
6、把随机数放在子查询里看看:
[yejr@imysql]> explain select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G 1000 rows in set (0.04 sec)
嗯,提速了不少,这个看起来还不赖:)
7、仿照上面的方法,改成JOIN和随机数子查询关联
[yejr@imysql]> explain select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: <derived2> type: system possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 1 Extra: *************************** 2. row *************************** id: 1 select_type: PRIMARY table: t1 type: range possible_keys: idx_id key: idx_id key_len: 4 ref: NULL rows: 196672 Extra: Using where; Using index *************************** 3. row *************************** id: 2 select_type: DERIVED table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: No tables used *************************** 4. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G 1000 rows in set (0.00 sec)
可以看到,全索引检索,发现符合记录的条件后,直接取得1000行,这个方法是最快的。
综上,想从MySQL数据库中随机取一条或者N条记录时,最好把RAND()生成随机数放在JOIN子查询中以提高效率。
上面说了那么多的废话,最后简单说下,就是把下面这个SQL:
SELECT id FROM table ORDER BY RAND() LIMIT n;
改造成下面这个:
SELECT id FROM table t1 JOIN (SELECT RAND() * (SELECT MAX(id) FROM table) AS nid) t2 ON t1.id > t2.nid LIMIT n;
如果想要达到完全随机,还可以改成下面这种写法:
SELECT id FROM table t1 JOIN (SELECT round(RAND() * (SELECT MAX(id) FROM table)) AS nid FROM table LIMIT n) t2 ON t1.id = t2.nid;
就可以享受在SQL中直接取得随机数了,不用再在程序中构造一串随机数去检索了。

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Eine der wichtigsten Änderungen, die in MySQL 8.4 (der neuesten LTS-Version von 2024) eingeführt wurden, besteht darin, dass das Plugin „MySQL Native Password“ nicht mehr standardmäßig aktiviert ist. Darüber hinaus entfernt MySQL 9.0 dieses Plugin vollständig. Diese Änderung betrifft PHP und andere Apps

Das Einrichten eines MySQL-Verbindungspools mit PHP kann die Leistung und Skalierbarkeit verbessern. Die Schritte umfassen: 1. Installieren Sie die MySQLi-Erweiterung. 2. Erstellen Sie eine Verbindungspool-Konfiguration. 4. Erstellen Sie eine Verbindungspool-Instanz. Mit Verbindungspooling können Anwendungen die Leistung verbessern, indem sie vermeiden, für jede Anfrage eine neue Datenbankverbindung zu erstellen.

PHP bietet die folgenden Methoden zum Löschen von Daten in MySQL-Tabellen: DELETE-Anweisung: Wird zum Löschen von Zeilen, die Bedingungen entsprechen, aus der Tabelle verwendet. TRUNCATETABLE-Anweisung: Wird zum Löschen aller Daten in der Tabelle verwendet, einschließlich automatisch inkrementierter IDs. Praxisfall: Sie können Benutzer mithilfe von HTML-Formularen und PHP-Code aus der Datenbank löschen. Das Formular übermittelt die Benutzer-ID und der PHP-Code verwendet die DELETE-Anweisung, um den Datensatz, der der ID entspricht, aus der Benutzertabelle zu löschen.

Die Seite ist leer, nachdem PHP eine Verbindung zu MySQL hergestellt ist und der Grund, warum Die () -Funktion fehlschlägt. Wenn Sie die Verbindung zwischen PHP und MySQL -Datenbank lernen, begegnen Sie häufig auf einige verwirrende Dinge ...

PHP ...

Viele Website -Entwickler stehen vor dem Problem der Integration von Node.js oder Python Services unter der Lampenarchitektur: Die vorhandene Lampe (Linux Apache MySQL PHP) Architekturwebsite benötigt ...

Wie teile ich dieselbe Seite auf der PC und auf der mobilen Seite und behandeln Sie Cache -Probleme? In der nginx -PHP -Umgebung MySQL, die mit dem Baota -Hintergrund erstellt wurde, wie man die PC -Seite und ...

Detaillierte Erläuterung des Problems des Abzweigung von Balancen in Kombination mit optimistischen PHP -Sperren und -Transaktionen in diesem Artikel wird ausführlich einen Gleichgewichtsabzug mit PHP, optimistischen Sperren und Datenbanktransaktionen analysieren ...
