


Asynchrone Coroutine-Entwicklungspraxis: Optimierung der Geschwindigkeit und Effizienz der Big-Data-Verarbeitung
Asynchrone Coroutine-Entwicklungspraxis: Optimierung der Geschwindigkeit und Effizienz der Big-Data-Verarbeitung
Einführung:
Im heutigen digitalen Zeitalter ist die Big-Data-Verarbeitung zu einer wichtigen Anforderung in allen Lebensbereichen geworden. Mit der Zunahme des Datenvolumens und der Komplexität können herkömmliche Methoden jedoch nicht mehr die Geschwindigkeits- und Effizienzanforderungen für die Verarbeitung großer Datenmengen erfüllen. Um dieses Problem zu lösen, ist in den letzten Jahren nach und nach die asynchrone Coroutine-Entwicklung entstanden. In diesem Artikel wird vorgestellt, was asynchrone Coroutine-Entwicklung ist und wie die asynchrone Coroutine-Entwicklung verwendet werden kann, um die Geschwindigkeit und Effizienz der Big-Data-Verarbeitung zu optimieren, und es werden spezifische Codebeispiele bereitgestellt.
1. Was ist asynchrone Coroutine-Entwicklung? Asynchrone Coroutine-Entwicklung ist eine gleichzeitige Programmiermethode, die es dem Programm ermöglicht, CPU-Ressourcen für die Ausführung anderer Aufgaben freizugeben, wodurch die Parallelitätsfähigkeit und Reaktionsfähigkeit des Programms verbessert wird. Im Vergleich zu herkömmlichen Thread- oder Prozessmethoden ist die asynchrone Coroutine-Entwicklung leichter, effizienter und benutzerfreundlicher.
Die asynchrone Coroutine-Entwicklung löst dieses Problem, indem sie E/A-Operationen in nicht blockierende Methoden umwandelt. Wenn das Programm auf einen E/A-Vorgang stößt, initiiert es eine asynchrone Anforderung und führt die nachfolgenden Vorgänge weiter aus, anstatt auf den Abschluss des E/A-Vorgangs zu warten. Wenn der E/A-Vorgang abgeschlossen ist, verarbeitet das Programm die Ergebnisse gemäß der vordefinierten Rückruffunktion. Diese Methode verbessert die Parallelität und Reaktionsgeschwindigkeit des Programms erheblich.
3. Praxis der asynchronen Coroutine-Entwicklung: Optimierung der Geschwindigkeit und Effizienz der Big-Data-Verarbeitung
Das Folgende ist ein Beispielcode, der die asynchrone Coroutine-Entwicklung zur Verarbeitung von Big Data verwendet:import asyncio async def process_data(data): # 模拟耗时的数据处理操作 await asyncio.sleep(1) # 处理数据 processed_data = data.upper() return processed_data async def process_big_data(big_data): processed_data_list = [] tasks = [] for data in big_data: # 创建协程任务 task = asyncio.create_task(process_data(data)) tasks.append(task) # 并发执行协程任务 processed_data_list = await asyncio.gather(*tasks) return processed_data_list async def main(): # 构造大数据 big_data = ['data1', 'data2', 'data3', ...] # 处理大数据 processed_data_list = await process_big_data(big_data) # 输出处理结果 print(processed_data_list) if __name__ == '__main__': asyncio.run(main())
Im obigen Code verarbeitet die -Funktion Daten und Ausgabe die Bearbeitungsergebnisse.
process_data
函数模拟了一个耗时的数据处理操作,并将处理结果使用await
关键字进行返回。process_big_data
函数则创建了多个协程任务,并使用asyncio.gather
函数来并发执行这些任务。最后,main
函数负责构造大数据,调用process_big_data
Durch die Verwendung der asynchronen Coroutine-Entwicklung kann der obige Code die Big-Data-Verarbeitung gleichzeitig ausführen, die CPU-Ressourcen voll ausnutzen und die Geschwindigkeit und Effizienz der Datenverarbeitung verbessern. Da die asynchrone Coroutine-Entwicklung außerdem auf Ereignisschleifen basiert, ist sie leichter als Multithreading oder Multiprozess und vermeidet den Aufwand für Thread- und Kontextwechsel.
Fazit:
Asynchrone Coroutine-Entwicklung ist ein wichtiges Mittel zur Optimierung der Big-Data-Verarbeitung. Durch die Verwendung der asynchronen Coroutine-Entwicklung können Big-Data-Verarbeitungsaufgaben gleichzeitig ausgeführt werden, wodurch die CPU-Ressourcen voll ausgenutzt werden und die Geschwindigkeit und Effizienz der Datenverarbeitung verbessert wird. In diesem Artikel werden die Konzepte und Prinzipien der asynchronen Coroutine-Entwicklung vorgestellt und ein spezifisches Codebeispiel bereitgestellt, um den Lesern dabei zu helfen, die asynchrone Coroutine-Entwicklung besser zu verstehen und sie auf die tatsächliche Big-Data-Verarbeitung anzuwenden.Das obige ist der detaillierte Inhalt vonAsynchrone Coroutine-Entwicklungspraxis: Optimierung der Geschwindigkeit und Effizienz der Big-Data-Verarbeitung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Fähigkeiten zur Verarbeitung von Big-Data-Strukturen: Chunking: Teilen Sie den Datensatz auf und verarbeiten Sie ihn in Blöcken, um den Speicherverbrauch zu reduzieren. Generator: Generieren Sie Datenelemente einzeln, ohne den gesamten Datensatz zu laden, geeignet für unbegrenzte Datensätze. Streaming: Lesen Sie Dateien oder fragen Sie Ergebnisse Zeile für Zeile ab, geeignet für große Dateien oder Remote-Daten. Externer Speicher: Speichern Sie die Daten bei sehr großen Datensätzen in einer Datenbank oder NoSQL.

In Go besteht eine Eltern-Kind-Beziehung zwischen Funktionen und Goroutinen. Die übergeordnete Goroutine erstellt die untergeordnete Goroutine, und die untergeordnete Goroutine kann auf die Variablen der übergeordneten Goroutine zugreifen, jedoch nicht umgekehrt. Erstellen Sie eine untergeordnete Goroutine mit dem Schlüsselwort go, und die untergeordnete Goroutine wird über eine anonyme Funktion oder eine benannte Funktion ausgeführt. Die übergeordnete Goroutine kann über sync.WaitGroup auf den Abschluss der untergeordneten Goroutine warten, um sicherzustellen, dass das Programm nicht beendet wird, bevor alle untergeordneten Goroutinen abgeschlossen sind.

AEC/O (Architecture, Engineering & Construction/Operation) bezieht sich auf die umfassenden Dienstleistungen, die Architekturdesign, Ingenieurdesign, Bau und Betrieb in der Bauindustrie anbieten. Im Jahr 2024 steht die AEC/O-Branche angesichts des technologischen Fortschritts vor sich ändernden Herausforderungen. In diesem Jahr wird voraussichtlich die Integration fortschrittlicher Technologien stattfinden, was einen Paradigmenwechsel in Design, Bau und Betrieb einläuten wird. Als Reaktion auf diese Veränderungen definieren Branchen Arbeitsprozesse neu, passen Prioritäten an und verbessern die Zusammenarbeit, um sich an die Bedürfnisse einer sich schnell verändernden Welt anzupassen. Die folgenden fünf großen Trends in der AEC/O-Branche werden im Jahr 2024 zu Schlüsselthemen und empfehlen den Weg in eine stärker integrierte, reaktionsfähigere und nachhaltigere Zukunft: integrierte Lieferkette, intelligente Fertigung

Parallelität und Coroutinen werden im GoAPI-Design für Folgendes verwendet: Hochleistungsverarbeitung: Mehrere Anfragen gleichzeitig verarbeiten, um die Leistung zu verbessern. Asynchrone Verarbeitung: Verwenden Sie Coroutinen, um Aufgaben (z. B. das Senden von E-Mails) asynchron zu verarbeiten und den Hauptthread freizugeben. Stream-Verarbeitung: Verwenden Sie Coroutinen, um Datenströme (z. B. Datenbanklesevorgänge) effizient zu verarbeiten.

Coroutine ist ein abstraktes Konzept zum gleichzeitigen Ausführen von Aufgaben, und Goroutine ist eine leichtgewichtige Thread-Funktion in der Go-Sprache, die das Konzept von Coroutine implementiert. Die beiden hängen eng zusammen, der Ressourcenverbrauch von Goroutine ist jedoch geringer und wird vom Go-Scheduler verwaltet. Goroutine wird häufig im tatsächlichen Kampf eingesetzt, beispielsweise zur gleichzeitigen Verarbeitung von Webanfragen und zur Verbesserung der Programmleistung.

1. Hintergrund des Baus der 58-Portrait-Plattform Zunächst möchte ich Ihnen den Hintergrund des Baus der 58-Portrait-Plattform mitteilen. 1. Das traditionelle Denken der traditionellen Profiling-Plattform reicht nicht mehr aus. Der Aufbau einer Benutzer-Profiling-Plattform basiert auf Data-Warehouse-Modellierungsfunktionen, um Daten aus mehreren Geschäftsbereichen zu integrieren, um genaue Benutzerporträts zu erstellen Und schließlich muss es über Datenplattformfunktionen verfügen, um Benutzerprofildaten effizient zu speichern, abzufragen und zu teilen sowie Profildienste bereitzustellen. Der Hauptunterschied zwischen einer selbst erstellten Business-Profiling-Plattform und einer Middle-Office-Profiling-Plattform besteht darin, dass die selbst erstellte Profiling-Plattform einen einzelnen Geschäftsbereich bedient und bei Bedarf angepasst werden kann. Die Mid-Office-Plattform bedient mehrere Geschäftsbereiche und ist komplex Modellierung und bietet allgemeinere Funktionen. 2.58 Benutzerporträts vom Hintergrund der Porträtkonstruktion im Mittelbahnsteig 58

Der Lebenszyklus der Go-Coroutine kann auf folgende Weise gesteuert werden: Erstellen Sie eine Coroutine: Verwenden Sie das Schlüsselwort go, um eine neue Aufgabe zu starten. Coroutinen beenden: Warten Sie, bis alle Coroutinen abgeschlossen sind, und verwenden Sie sync.WaitGroup. Verwenden Sie Kanalschließsignale. Verwenden Sie context context.Context.

Bei der Verarbeitung großer Datenmengen kann die Verwendung einer In-Memory-Datenbank (z. B. Aerospike) die Leistung von C++-Anwendungen verbessern, da sie Daten im Computerspeicher speichert, wodurch Festplatten-E/A-Engpässe vermieden und die Datenzugriffsgeschwindigkeiten erheblich erhöht werden. Praxisbeispiele zeigen, dass die Abfragegeschwindigkeit bei Verwendung einer In-Memory-Datenbank um mehrere Größenordnungen schneller ist als bei Verwendung einer Festplattendatenbank.
